Project description:Novel Anaerobic Fermentation Paradigm of Producing Medium-chain Fatty Acids from Food Wastes with Self-Produced Ethanol as Electron Donor
| PRJNA1026155 | ENA
Project description:Effects of medium-chain fatty acid supplementation on dairy cow performance and rumen fermentation
Project description:Impaired hepatic glucose and lipid metabolism are hallmarks of type–2 diabetes. Increased sulfide production or sulfide–donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver–enriched mitochondrial SOP enzyme thiosulfate sulfur–transferase (Tst—/— mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst—/— mice due to exaggerated induction of sulfide disposal, with an associated suppression of global protein persulfidation and nuclear respiratory factor–2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium–chain fatty acid oxidation in Tst—/— mice. We reveal a critical role for TST in hepatic metabolism that has implications for sulfide-donor strategies in the context of metabolic disease.
2021-11-11 | PXD028909 | Pride
Project description:Bacteria and Archaea ecology of medium chain fatty acids production from wastes leachates fermentation
Project description:Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil or krill oil. We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (krill oil) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that krill oil-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from fish oil modulated fewer pathways than a krill oil-supplemented diet and did not modulate key metabolic pathways regulated by krill oil, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, fish oil upregulated the cholesterol synthesis pathway, which was the opposite effect of krill supplementation. Neither diet elicited changes in plasma levels of lipids, glucose or insulin, probably because the mice used in this study were young and were fed a low fat diet. Further studies of krill oil supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects. Twenty-one microarrays: three diets (CO, FO, KO) x seven mice per diet x one microarray per mouse
Project description:Transcriptomics analysis of biopolymer (medium chain length polyhydroxyalkanoate) producing strain P.putida LS46 cultured with biodiesel derived waste carbon sources: studies of cellular adaptation to the industrial waste streams and metabolic profiling under the polymer producing conditions. We are reporting RNAseq analysis data here as part of our multi-level Omics study of medium chain length polyhydroxyalkanoate (mcl-PHA) producing strain P.putida LS46 culture with biodiesel derived waste glycerol and waste fatty acids. The data presented here will be used in two separate manuscripts. The objectives of this study are a): to evaluate cellular responses of P.putida LS46 under industrial waste stream. b): to study gene expression profile under two selected mcl-PHA producing conditions of P.putida LS46. Comparative multi-level Omics study: for objective a): Exponential P.putida LS46 cell from waste glycerol culture compared against reagent grade pure glycerol culture. For objective b): Two mcl-PHA producing conditions, namely stationary phase waste glycerol culture and exponential phase waste fatty acid culture of P.putida LS46, were compared against exponential phase waste glycerol culture of P.putida LS46. Major results from objective a): The waste glycerol substrate induced expression of a large number of genes putatively involved in heavy metal tolerance, including three gene clusters: a putative cusABC transcript unit and two copies of copAB, which are usually involved in copper resistance and tolerance to other monovalent heavy metals. A local gene relocation was observed in cluster 1 consisting cusABC and copAB relative to the KT2440 type strain according to the phylogenetic and gene neighbourhood analyses on various P. putida strains. P. putida LS46 also contains 11 putative MerR family regulators, which sense various environmental stimuli including heavy metals. MerR-1 is an ortholog of the copper response regulator of other gram-negative bacteria, and was highly up-regulated in waste glycerol cultures. Finally, a number of genes involved in cell responses to high extra-cellular Na+ concentrations, and genes of the fatty acid beta-oxidation pathway were up-regulated in waste glycerol cultures Major results from objective b): Regardless to the type of substrates, up-regulation of two mcl-PHA synthase (PhaC1 and PhaC2), and two phasin proteins (PhaF and PhaI) are the most common genotype under mcl-PHA production conditions. PhaG and possible PhaJ4 connect fatty acid de novo synthesis to mcl-PHA in waste glycerol culture. Interestingly, expression of gene, fabZ, in production of unsaturated fatty acid from fatty acid de novo synthesis was only observed in waste glycerol culture. On the other hand, PhaJ1 and PhaJ4 derived mcl-PHA production via fatty acid beta-oxidation was observed under waste fatty acid culture. These results would help to explain observed different production kinetics and monomer distribution of the polymer. Although under active mcl-PHA production condition, depression on the expression of glpF genes in glycerol transportation system prevent further channelling extra-cellular glycerol into the cell. Waste glycerol culture also triggers trahalose synthesis pathway, a potential competing pathway during mcl-PHA synthesizing. In waste fatty acid culture, the intermediates (acyl-CoA and 3-hydroxyacyl-CoA) of fatty acid beta-oxidation were used for mcl-PHA production and were also likely hydrolysed to their free acid forms via an up-regulated thioesteras coding gene, tesA. Acetyl-CoA cleaved from the pathway was clearly channeled into glyoxylate shut for C2 carbon assimilation over spillage as CO2 through TCA cycle or used in fatty acid biosynthesis pathway. In total 4 sampling points, namely exponential phase of pure glycerol, waste glycerol and waste free fatty acids cultures, and stationary phase of waste glycerol culture. For each sampling point, 2 biological replicates were taken. (Thus 8 samples in total)
Project description:Transcriptomics analysis of biopolymer (medium chain length polyhydroxyalkanoate) producing strain P.putida LS46 cultured with biodiesel derived waste carbon sources: studies of cellular adaptation to the industrial waste streams and metabolic profiling under the polymer producing conditions. We are reporting RNAseq analysis data here as part of our multi-level Omics study of medium chain length polyhydroxyalkanoate (mcl-PHA) producing strain P.putida LS46 culture with biodiesel derived waste glycerol and waste fatty acids. The data presented here will be used in two separate manuscripts. The objectives of this study are a): to evaluate cellular responses of P.putida LS46 under industrial waste stream. b): to study gene expression profile under two selected mcl-PHA producing conditions of P.putida LS46. Comparative multi-level Omics study: for objective a): Exponential P.putida LS46 cell from waste glycerol culture compared against reagent grade pure glycerol culture. For objective b): Two mcl-PHA producing conditions, namely stationary phase waste glycerol culture and exponential phase waste fatty acid culture of P.putida LS46, were compared against exponential phase waste glycerol culture of P.putida LS46. Major results from objective a): The waste glycerol substrate induced expression of a large number of genes putatively involved in heavy metal tolerance, including three gene clusters: a putative cusABC transcript unit and two copies of copAB, which are usually involved in copper resistance and tolerance to other monovalent heavy metals. A local gene relocation was observed in cluster 1 consisting cusABC and copAB relative to the KT2440 type strain according to the phylogenetic and gene neighbourhood analyses on various P. putida strains. P. putida LS46 also contains 11 putative MerR family regulators, which sense various environmental stimuli including heavy metals. MerR-1 is an ortholog of the copper response regulator of other gram-negative bacteria, and was highly up-regulated in waste glycerol cultures. Finally, a number of genes involved in cell responses to high extra-cellular Na+ concentrations, and genes of the fatty acid beta-oxidation pathway were up-regulated in waste glycerol cultures Major results from objective b): Regardless to the type of substrates, up-regulation of two mcl-PHA synthase (PhaC1 and PhaC2), and two phasin proteins (PhaF and PhaI) are the most common genotype under mcl-PHA production conditions. PhaG and possible PhaJ4 connect fatty acid de novo synthesis to mcl-PHA in waste glycerol culture. Interestingly, expression of gene, fabZ, in production of unsaturated fatty acid from fatty acid de novo synthesis was only observed in waste glycerol culture. On the other hand, PhaJ1 and PhaJ4 derived mcl-PHA production via fatty acid beta-oxidation was observed under waste fatty acid culture. These results would help to explain observed different production kinetics and monomer distribution of the polymer. Although under active mcl-PHA production condition, depression on the expression of glpF genes in glycerol transportation system prevent further channelling extra-cellular glycerol into the cell. Waste glycerol culture also triggers trahalose synthesis pathway, a potential competing pathway during mcl-PHA synthesizing. In waste fatty acid culture, the intermediates (acyl-CoA and 3-hydroxyacyl-CoA) of fatty acid beta-oxidation were used for mcl-PHA production and were also likely hydrolysed to their free acid forms via an up-regulated thioesteras coding gene, tesA. Acetyl-CoA cleaved from the pathway was clearly channeled into glyoxylate shut for C2 carbon assimilation over spillage as CO2 through TCA cycle or used in fatty acid biosynthesis pathway.
Project description:We report the miRNA profile of murine macrophages (cell line: RAW264.7) after supplementation with polyunsaturated fatty acids (PUFA) and stimulation with LTA. The fatty acids docosahexaenoic acid (DHA, C22:6n3) or arachidonic acid (AA, C20:4n6) were included in the culture medium in concentrations of 15 µmol/L using ethanol as a vehicle (0.2 % v/v final ethanol concentration). Cells were cultured in the enriched media totaling 72 h. Stimulation of cells was performed in the last 24 h of fatty acid supplementation by addition of LTA (0.5 µg/mL; from Staphylococcus aureus).