Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction A ten chip study using PCR amplicons from cloned 16S rRNA genes and from diverse soil 16S rRNAs, with PCR primers specific to the Division Acidobacteria. Each chip measures the signal from 42,194 probes (in triplicate) targeting Acidobacteria division, subdivision, and subclades as well as other bacterial phyla. All samples except one (GSM464591) include 2.5 M betaine in the hybridization buffer. Pair files lost due to a computer crash.
Project description:Hypervariable regions V3-V5 of bacterial 16S rRNA genes. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:We aimed to investigate the microbial community composition in patients with intracerebral hemorrhage (ICH) and its effect on prognosis. The relationship between changes in bacterial flora and the prognosis of spontaneous cerebral hemorrhage was studied in two cohort studies. Fecal samples from healthy volunteers and patients with intracerebral hemorrhage were subjected to 16S rRNA sequencing at three time points: T1 (within 24 hours of admission), T2 (3 days post-surgery), and T3 (7 days post-surgery) using Illumina high-throughput sequencing technology.
Project description:Here we report 16S rRNA data in gut microbiota of autism spectrum disorders compared with healthy volunteers. A total of 1322 operational taxonomic units (OTUs) were identified in the sequence data. The Bacteroidetes and Firmicutes were both dominated phylum in ausitic subjects and healthy controls. Phylum level analysis showed a clear alteration of the bacterial gut community in ASD characterized by a higher Firmicutes (P < 0.05), Proteobacteria (P < 0.001), and Actinobacteria (P < 0.001) than that in healthy controls. However, Bacteroidetes were significantly decreased in ASD patients (P < 0.001).
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years