Project description:In this study, we performed deep sequencing and bioinformatics analyses of tea plant leaves to identify and characterize known and novel miRNAs. A total of 26,876,261 raw reads were produced from 2 libraries. We detected 422 known miRNAs belonging to 125 families, and 68 putative novel miRNAs.
Project description:Purpose: Deconstructing the soil microbiome into reduced-complexity functional modules represents a novel method of microbiome analysis. The goals of this study are to confirm differences in transcriptomic patterns among five functional module consortia. Methods: mRNA profiles of 3 replicates each of functional module enrichments of soil inoculum in M9 media with either 1) xylose, 2) n-acetylglucosamine, 3) glucose and gentamycin, 4) xylan, or 5) pectin were generated by sequencing using an Illumina platform (GENEWIZ performed sequencing). Sequence reads that passed quality filters were aligned to a soil metagenome using Burrows Wheeler Aligner. Resulting SAM files were converted to raw reads using HTSeq, and annotated using Uniref90 or EGGNOG databases. Results: To reduce the size of the RNA-Seq counts table and increase its computational tractability, transcripts containing a minimum of 75 total counts, but no more than 3 zero counts, across the 15 samples were removed. The subsequent dataset was normalized using DESeq2, resulting in a dataset consisting of 6947 unique transcripts across the 15 samples, and 185,920,068 reads. We identified gene categories that were enriched in a sample type relative to the overall dataset using Fisher’s exact test. Conclusions: our dataset confirms that the functional module consortia generated from targeted enrichments of a starting soil inoculum had distinct functional trends by enrichment type.