ABSTRACT: Transcriptomes of Fragaria nilgerrensis (FN, white skin, control) and its interspecific hybrids BF1 and BF2 (pale red skin) Raw sequence reads
Project description:Transcriptomic analysis reveals the mechanism underlying the anthocyanin changes in Fragaria nilgerrensis Schlecht. and its interspecific hybrids
Project description:We profiled the transcriptomes of four Saccharomyces species, as well as pairwise hybrids between three of the species with S. cerevisiae For pairwise comparisons between Saccharomyces cerevisiae and each of S. paradoxus, S. mikatae, and S. bayanus, we performed 3'-end RNA-seq on RNA from each parent species and each interspecific hybrid.
Project description:We sequenced and assembled de novo the coding transcriptomes in four species of Notothenioid fish: Neopagetopsis ionah (Jonah’s ice fish), Pseudochaenichtys georgianus (South Georgia icefish), Harpagifer antarcticus (Antarctic spiny plunderfish) and Parachaenichthys charcoti (Charcot’s dragonfish). We sampled 1-4 individuals and 1-14 tissues (brain, white muscle, liver, head kidney, trunk kidney, skin, heart, red muscle, spleen, ovary, testis, whole blood, gill, red blood cells) in each species, depending on tissue availability.
Project description:Pink-flowered strawberry is a new promising ornamental flower derived from intergeneric hybridization (Fragaria × Potentilla) with bright color, prolonged flowering period and edible fruits. However, the transcriptional events underlying anthocyanins biosynthesis pathway have not been fully characterized in its petal coloration. The pigment compounds accumulated in its fruits were the same as cultivated strawberry, but different from in its flowers. To gain insights into the regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed an integrated analyses of the transcriptome and metabolomes involved in red petals at three development stages (Bud stage (L), Coloration beginning stage (Z) and Big bud stage (D)) of pink-flowered strawberry. Transcript and metabolite profiles were generated through high-throughput RNA-sequencing and high-performance liquid chromatography coupled with mass spectrometry, respectively. The results showed that the main pigments of red and dark pink petals were anthocyanins, among which cyanidins were the main compounds. There were no anthocyanins detected in white-flowered hybrids. A total of 50 285 non-redundant unigenes were obtained from the transcriptome databases, among which 59 differentially expressed genes could be identified as putative homologues of flower coloration related genes. Based on a comprehensive analysis relating pigmentation compounds to gene expression profiles, the mechanism of flower color formation was examined in pink-flowered strawberry. Furthermore, a new hypothesis explaining the lack of color phenotype of the white-flowered strawberry hybrids from the level of the transcriptome. The expression patterns of FpDFR gene and FpANS gene corresponded to the accumulation patterns of cyanidin contents in pink-flowered strawberry hybrids with different shades of pink; Whereas other anthocyanin biosynthesis genes were weakly related flower color deepened. Moreover, FpANS, FpBZ1 and FpUGT75C1 genes were the key factors that lead to the inability to accumulate anthocyanins in the white petals of PFS hybrids. Meanwhile, the competitive effect of FpFLS gene and FpDFR gene may further inhibit anthocyanin synthesis. The data presented herein are important for understanding of the molecular mechanisms underlying the petal pigmentation and will be powerful for integrating into novel genes that are potential targets for breeding new valuable pink-flowered strawberry cultivars.
Project description:Protein expression from berry skin of four different red grape biotypes was compared at a proteome-wide level by bottom-up shotgun proteomics, label free quantification and MaxQuant-assisted computational analysis. Red grapes were from a purebred Vitis vinifera (Aglianico cv.), a V. vinifera (local Sciascinoso cv.) grafted onto an American rootstock, an interspecific hybrid (V. vinifera × V. labrusca, Isabel) and an uncharacterized red grape with some hybrid lineage, as demonstrated by the presence of relatively high amounts of anthocyanidin 3,5-O-diglucosides. The aim was assessing the differences among red grape biotypes at a protein expression levels, also addressing the possible effect of the grafting on the phenotypic expression of some key metabolic enzymes in grape berries.
2022-02-22 | PXD025784 | Pride
Project description:Fragaria nilgerrensis whole-genome resequencing data