Project description:We report the generation and analysis of high-throughput DNA methylation profiles at nucleotide resolution in a subset of targeted gene trap mouse mutants. Using high-throughput sequencing of bisulfite treated DNA, we generated DNA methylation percentage for CpG islands, and LacZ (reporter) gene in mice with the apparent silencing of the targeted gene promoter reflected by reduced reporter mRNA level. These results were contrasted with findings for a set of mutants with no silencing or CpG methylation following targeted mutagenesis using the same gene trap vector. Our findings supports the hypothesis that presence of the exogenous DNA in the targeting vector may influence the expression of genes in close proximity or may lead to promoter silencing of the target where the promoter is marked by CpG methylation. Examination of CpG methylation profiles in Knock-out and wild type mice We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. CpG Islands (samples labeled as CpG) and trans gene (samples labeled as LacZ) were amplified after Bisulfite treatment. Please note that the same gDNA was used to amplify CpG Island (Gene_CpG_KO ) and LacZ (Gene_LacZ_KO) reporter for the same gene. PCR product of amplification was gel separated, isolated and pooled. After libraries were prepared and sequenced, the alignment was performed. CpG island and LacZ alignments were done separately resulting in three different Processed Data files per gene investigated: Gene_CpG_KO, Gene_LacZ_KO and Gene_CpG_WT. LacZ reference is included in the submission, but is also available for download from KOMP Phenotype website (www.kompphenotype.org). Also please note that the libraries were prepared using Illumina TruSeq RNA Sample Prep Kit starting from adapter binding step as samples were double stranded Bisulfite treated DNA amplicons. So the library preparation was done as with RNASeq, but samples investigated were bisulfite treated.
Project description:We report the generation and analysis of high-throughput DNA methylation profiles at nucleotide resolution in a subset of targeted gene trap mouse mutants. Using high-throughput sequencing of bisulfite treated DNA, we generated DNA methylation percentage for CpG islands, and LacZ (reporter) gene in mice with the apparent silencing of the targeted gene promoter reflected by reduced reporter mRNA level. These results were contrasted with findings for a set of mutants with no silencing or CpG methylation following targeted mutagenesis using the same gene trap vector. Our findings supports the hypothesis that presence of the exogenous DNA in the targeting vector may influence the expression of genes in close proximity or may lead to promoter silencing of the target where the promoter is marked by CpG methylation.
Project description:This SuperSeries is composed of the following subset Series: GSE38560: CpG islands and GC content dictate nucleosome depletion in a transcription independent manner at mammalian promoters (RNA-seq) GSE38561: CpG islands and GC content dictate nucleosome depletion in a transcription independent manner at mammalian promoters (ChIP-seq) GSE38562: CpG islands and GC content dictate nucleosome depletion in a transcription independent manner at mammalian promoters (genomic SEQ) GSE38563: CpG islands and GC content dictate nucleosome depletion in a transcription independent manner at mammalian promoters (MNase-seq) GSE38564: CpG islands and GC content dictate nucleosome depletion in a transcription independent manner at mammalian promoters (5) Refer to individual Series
Project description:Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in “rewriting” the cancer methylome at specific regulatory regions.
Project description:Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in “rewriting” the cancer methylome at specific regulatory regions.
Project description:Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in â??rewritingâ?? the cancer methylome at specific regulatory regions. LNCaP prostate cancer cell line clones with reduced MBD2 expression were establised by using shRNA to MBD2 and scrambled control clones were established with scrambled control shRNA. To interrogate methylation changes induced by MBD2 knock-down we profiled three stably transfected scrambled control clones and three MBD2 knockdown clones on Illumina HumanMethylation450K arrays. Differential methylation analysis was carried out to identified CpG sites hypo-/hyper-methylated as a result of MBD2 knockdown.
Project description:Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in ârewritingâ the cancer methylome at specific regulatory regions. LNCaP prostate cancer cell line clones with reduced MBD2 expression were establised by using shRNA to MBD2 and scrambled control clones were established with scrambled control shRNA. To interrogate expression changes induced by MBD2 knock-down we profiled three stably transfected scrambled control clones and three MBD2 knockdown clones on Affymetrix HuGene 1.0ST expression arrays. Differential expression analysis was carried out to identified genes up-/down-regulated by MBD2 knockdown.
Project description:One clear hallmark of mammalian promoters is the presence of CpG islands (CGIs) at more than two thirds of genes whereas TATA boxes are only present at a minority of promoters. Using genome-wide approaches, we show that GC content and CGIs are major promoter elements in mammalian cells, able to govern open chromatin conformation and support paused transcription. First, we define three classes of promoters with distinct transcriptional directionality and pausing properties which correlate with their GC content. We further analyze the direct influence of GC content on nucleosome positioning and depletion, and show that CGIs correlate with nucleosome depletion both in vivo and in vitro. We also show that transcription is not essential for nucleosome exclusion but influences both a weak +1 and a well-positioned nucleosome at CGI borders. Altogether our data support the idea that CGIs have become an essential feature of promoter structure defining novel regulatory properties in mammals.
Project description:One clear hallmark of mammalian promoters is the presence of CpG islands (CGIs) at more than two thirds of genes whereas TATA boxes are only present at a minority of promoters. Using genome-wide approaches, we show that GC content and CGIs are major promoter elements in mammalian cells, able to govern open chromatin conformation and support paused transcription. First, we define three classes of promoters with distinct transcriptional directionality and pausing properties which correlate with their GC content. We further analyze the direct influence of GC content on nucleosome positioning and depletion, and show that CGIs correlate with nucleosome depletion both in vivo and in vitro. We also show that transcription is not essential for nucleosome exclusion but influences both a weak +1 and a well-positioned nucleosome at CGI borders. Altogether our data support the idea that CGIs have become an essential feature of promoter structure defining novel regulatory properties in mammals.