Project description:We used two wheat genotypes, the susceptible wheat cultivar ‘8866 ’(S) and its near isogenic line with single powdery mildew resistance gene ‘pm30’ (R), to investigate gene expression changes in response to powdery mildew infection by using Wheat Genome Array
Project description:Purpose: The powdery mildew fungus, Blumeria graminis, is an obligate biotrophic pathogen of cereals and has significant impact on food security (Dean et al., 2012. Molecular Plant Pathology 13 (4): 414-430. DOI: 10.1111/j.1364-3703.2011.00783.x). Blumeria graminis f. sp. hordei (Bgh) is the causal agent of powdery mildew on barley (Hordeum vulgare L.). We sought to identify small RNAs (sRNAs) from both barley and Bgh that regulate gene expression both within species and cross-kingdom.
Project description:We generated ChIP-Seq data for two barley accessions with different resistance to powdery mildew. These data allowed us to explore the roles of epigenetic modifications in resistance response to powdery mildew at the first time. Our study opens the way for establishing the relationship between epigenetics and disease response in barley, and should inform future functional characterization of the regarding molecular basis. These data should also help researchers to exploit disease response-related genes for breeding application.
Project description:Purpose: The powdery mildew fungus, Blumeria graminis, is an obligate biotrophic pathogen of cereals and has significant impact on food security (Dean et al., 2012). B. graminis f. sp. hordei (Bgh) is the causal agent of powdery mildew on barley (Hordeum vulgare L.). We sought to address the temporal regulation of membrane trafficking associated gene expression in barley-powdery mildew interactions. We created an isogenic panel of immune signaling mutants to address three main questions: (i) which Blumeria secreted proteins are differentially regulated in response to different compromised genotypes, (ii) which barley membrane trafficking genes are altered in response to pathogen attack, and (iii) how are these genes interacting across genotypes and infection stages.
Project description:We used two wheat genotypes, the susceptible wheat cultivar ‘8866 ’(S) and its near isogenic line with single powdery mildew resistance gene ‘pm30’ (R), to investigate gene expression changes in response to powdery mildew infection by using Wheat Genome Array wheat young leveas of near isogenic lines before or 12 hours after powdery mildew infection were selected for RNA extraction and hybridization on Affymetrix microarrays.The leaf samples were harvested from three independent biological replicates, and the leaves without inoculation were regarded as control.
Project description:There were two genotypes: (1) Columbia-0, wild-type (C) (2) pmr4-1 mutant (P), callose synthase deficient mutant (Vogel and Somerville (2000) Proc. Natl. Acad. Sci., USA 97: 1897). There were two treatments: (1) uninoculated (U) (2) 3 days after inoculation with the powdery mildew pathogen, Erysiphe cichoracearum, race UCSC (I). There were four biological replicates, labeled 1, 2, 3 or 4. Examples of the sample labels are: CU1 = Columbia-0, uninoculated, replicate 1 CI2 = Columbia-0, 3 days after inoculation with powdery mildew, replicate 2 PU3 = pmr4-1, uninoculated, replicate 3 PI4 = pmr4-1, 3 days after inoculation with powdery mildew, replicate 4. In total, there were 16 Affymetrix ATH1 GeneChips (2 genotypes x 2 treatments x 4 biological replicates). Keywords: repeat sample
Project description:Purpose: The powdery mildew fungus, Blumeria graminis, is an obligate biotrophic pathogen of cereals and has significant impact on food security (Dean et al., 2012. Molecular Plant Pathology 13 (4): 414-430. DOI: 10.1111/j.1364-3703.2011.00783.x). Blumeria graminis f. sp. hordei (Bgh) is the causal agent of powdery mildew on barley (Hordeum vulgare L.). We sought to discover novel transcripts expressed following barley infection with blumeria.
Project description:Powdery mildew caused by Erysiphe cruciferarum, is an epidemic of oil rapeseed (Brassica napus) growing worldwide, but resistant germplasm is rare in this species. We obtained the hybrid seeds of distant hybridization between powdery-mildew-immune Brassica carinata cultivar ‘White flower’ and susceptible B. napus cultivar ‘Zhongshuang11’. Five lines in the BC1F3 generation (F3 after backcross to 'Zhongshuang11') were identified to be resistant or moderately resistant. In order to identify the important biological responses to powdery mildew, the foliar transcriptomes of the resistant and susceptible plants in these progenies after powdery mildew inoculation were compared by using Illumina RNA-seq. We identified 10,454 differential expression genes (DEGs) and 1050 genes out of them are related to disease resistance. There were 271 DEGs in Group Resistance expressed at least two fold higher than in group S, while 779 DGEs expressed two fold lower. The genes highly expressed in Group Resistance are those encoding the proteins: (1) related to wax, chloroplast and cell wall metabolism, such as KCS6, CSP41B, RWA, callose synthetase 3, pectinase 9, fructosidase 2, 9s-lipoxygenase LOX2, etc.; (2) kinases including RKL, ERECTA, BAK1, BAM2, LysM receptor like kinase, and lipid transfer protein kinase ERl1 and ERl2; (3) broad spectrum powdery mildew resistance proteins RPW8, calmodulin MLO2, PMR5, MLP328, EDR2, RPS4 and RPS6, etc. In group susceptible, pectinesterase, cytochrome CYP81f2, LOX1, cysteine rich receptor protein kinases and serine / threonine protein kinases such as MEKK, RLK6, CRK45, APK1, BRl3, WAK1, WAK10, etc., and TIR-NB-LRR receptor like proteins R1M1, DSC1, DSC2 and pathogenesis-related protein PR-1 etc. were the most activated genes. The results provide the preliminarily knowledge about molecular mechanism in rapeseed defense response to powdery mildew.
Project description:For transcript analysis of early hypersensitive and susceptible responses of Medicago truncatula to the powdery mildew pathogen, Erysiphe pisi, we compared transcripts from pathogen-inoculated and control (non-inoculated) plants 12 h after infection in resistant (A14), partially resistant (A20), and susceptible (DZA315.16) genotypes. Published in: Medicago truncatula to the powdery mildew 1 and anthracnose pathogens, Erysiphe pisi and Colletotrichum trifolii. Molecular Plant Pathology 8(3):307-319 Keywords: 1 time points and 3 genotypes