Project description:Although much is known on the transcriptional profiles of dendritic cells (DCs) during maturation, the molecular switches critical for the acquisition of a tolerogenic program by DCs are still obscure. In the present study, we explored the gene expression pattern of CD8+ DCs purified from the mouse spleen and treated with interferon (IFN)-gamma. The cytokine, indeed, potentiates the tolerogenic potential of this DC subset via induction of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase (IDO). By comparing the expression of the IFN-gamma-modulated genes in IDO+ versus IDO- murine DCs, we found a consistent and selective association of the IDO-competent phenotype with the down-modulation of the Tyrobp gene, encoding the adapter molecule DAP12. IFN-gamma-mediated down-modulation of this gene involved IFN consensus sequence binding protein (ICSBP), a transcription factor also known as IRF-8. While silencing of Tyrobp conferred IDO functional competence on IDO- DCs, silencing of Icsbp1 in IDO+ cells completely abolished IDO expression and function. In parallel, silencing of TYROBP conferred IDO competence on human IDO- DCs while silencing of IRF8 impaired IDO expression and activity in human IDO+ DCs. Therefore, the same small set of molecular switches controls IDO competence in murine and human DCs. Keywords: Time-course, treatment with agent (IFN-gamma)
Project description:Although much is known on the transcriptional profiles of dendritic cells (DCs) during maturation, the molecular switches critical for the acquisition of a tolerogenic program by DCs are still obscure. In the present study, we explored the gene expression pattern of CD8+ DCs purified from the mouse spleen and treated with interferon (IFN)-gamma. The cytokine, indeed, potentiates the tolerogenic potential of this DC subset via induction of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase (IDO). By comparing the expression of the IFN-gamma-modulated genes in IDO+ versus IDO- murine DCs, we found a consistent and selective association of the IDO-competent phenotype with the down-modulation of the Tyrobp gene, encoding the adapter molecule DAP12. IFN-gamma-mediated down-modulation of this gene involved IFN consensus sequence binding protein (ICSBP), a transcription factor also known as IRF-8. While silencing of Tyrobp conferred IDO functional competence on IDO- DCs, silencing of Icsbp1 in IDO+ cells completely abolished IDO expression and function. In parallel, silencing of TYROBP conferred IDO competence on human IDO- DCs while silencing of IRF8 impaired IDO expression and activity in human IDO+ DCs. Therefore, the same small set of molecular switches controls IDO competence in murine and human DCs. Experiment Overall Design: Labeled cRNA extracted from a a total of 8 samples was hybridized to the Affymetrix GeneChip MG-U74Av2 which contains 12,488 probe sets . The 4 control samples included 2 replicates each of RNA extracted from cells incubated in medium for 4 and 16 hours. Treated samples included 2 replicates each of RNA extracted from cells incubated in IFN-gammas for 4 and 16 hours.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.