Project description:Blood–brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell–derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/β-catenin signaling and inhibition of the TGF-β pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/β-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell–derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.
Project description:Rationale. The microvasculature of the central nervous system includes the blood-brain barrier (BBB), which regulates the permeability to nutrients and restricts the passage of toxic agents and inflammatory cells. Canonical Wnt/b-catenin signaling is responsible for the early phases of brain vascularization and blood-brain barrier differentiation. However, this signal declines after birth and other signaling pathways able to maintain barrier integrity at postnatal stage are still unknown. Objective. Sox17 constitutes a major downstream target of Wnt/b-catenin in endothelial cells and regulates arterial differentiation. In the present paper, we asked whether Sox17 may act downstream of Wnt/b-catenin in inducing BBB differentiation and maintenance. Methods and Results. Using reporter mice and nuclear staining of Sox17 and b-catenin, we report that while b-catenin signaling declines after birth, Sox17 activation increases and remains high in the adult. Endothelial-specific inactivation of Sox17 leads to increase of permeability of the brain microcirculation. The severity of this effect depends on the degree of BBB maturation: it is strong in the embryo, and progressively declines after birth. In search of Sox17 mechanism of action, RNA-Seq analysis of gene expression of brain endothelial cells has identified members of the Wnt/b-catenin signaling pathway as downstream targets of Sox17. Consistently, we found that Sox17 is a positive inducer of Wnt/b-catenin signaling and it acts in concert with this pathway to induce and maintain BBB properties. In vivo, inhibition of the b-catenin destruction complex or expression of a degradation-resistant b-catenin mutant, prevent the increase in permeability and retina vascular malformations observed in the absence of Sox17. Conclusions. Our data highlight a novel role for Sox17 in the induction and maintenance of the BBB and they underline the strict reciprocal tuning of this transcription factor and Wnt/b-catenin pathway. Modulation of Sox17 activity may be relevant to control BBB permeability in pathological conditions.
Project description:The blood-brain barrier (BBB) is a unique set of properties of the brain vasculature which severely restricts its permeability to proteins and small molecules. Classic chick-quail chimera studies showed that these properties are not intrinsic to the brain vasculature but rather are induced by surrounding neural tissue. Here we identify Spock1 as a candidate neuronal signal for regulating BBB permeability in zebrafish and mice. Mosaic genetic analysis shows that neuronally-expressed Spock1 is cell non-autonomously required for a functional BBB. Leakage in spock1 mutants is associated with altered extracellular matrix (ECM), increased endothelial transcytosis, and altered pericyte-endothelial interactions. Furthermore, a single dose of recombinant SPOCK1 into spock1 mutants quenches gelatinase activity, restores vascular expression of BBB genes including mcamb, and partially restores barrier function. These analyses support a model in which neuronally secreted Spock1 induces BBB properties by altering the ECM, thereby regulating pericyte-endothelial interactions and downstream vascular gene expression.
Project description:The blood-brain barrier (BBB) is an evolutionary conserved tissue interface that possesses potent chemical protection properties functioning to strictly modulate the central nervous system (CNS) microenvironment. These same properties, including tight cellular junctions and efflux transporters, also limit access of CNS-active pharmaceuticals. For this reason, understanding the molecular mechanisms that regulate BBB chemical protection is of great biomedical interest. The BBB of Drosophila consists of two surface glia layers that completely surround the brain. This tissue interface contains both “tight” cellular junctions (termed septate junctions) and drug efflux transporters; thus, the Drosophila BBB can potentially serve as a model for understanding complex regulation of BBB physiology. In this study, we show reciprocal compensatory responses following disruption of critical BBB genes: deletion of the septate junction regulator Moody causes increased drug efflux and up-regulation of the P-glycoprotein ortholog Mdr65; conversely, disruption of Mdr65 expression causes increased septate junction tightness and up-regulation of Moody. We reveal these homeostatic interactions with physiologic observations, gene expression data, and anatomical images of the BBB surface. Whole brain microarray data point to responses that are consistent with our physiologic observations and these responses are likely localized to the BBB. To our knowledge, this is the first observation of a reciprocal compensatory interaction at a tissue barrier. Furthermore, this study paves the way for future studies elucidating the direct pathways that link GPCR signaling and drug transporter regulation at the BBB. The main comparisons are between WT_new, C17 (Moody null), and PMdr65 (Mdr65 null). Since WT_new were processed on a different day than C17 and PMdr65, we also included another WT sample (WT_old) to control for genes that change depending on batch effects. Since the mutants are also in a different genetic background than WT, we also included a control that is in a similar background (UAS_control).
Project description:The blood-brain barrier (BBB) is an evolutionary conserved tissue interface that possesses potent chemical protection properties functioning to strictly modulate the central nervous system (CNS) microenvironment. These same properties, including tight cellular junctions and efflux transporters, also limit access of CNS-active pharmaceuticals. For this reason, understanding the molecular mechanisms that regulate BBB chemical protection is of great biomedical interest. The BBB of Drosophila consists of two surface glia layers that completely surround the brain. This tissue interface contains both “tight” cellular junctions (termed septate junctions) and drug efflux transporters; thus, the Drosophila BBB can potentially serve as a model for understanding complex regulation of BBB physiology. In this study, we show reciprocal compensatory responses following disruption of critical BBB genes: deletion of the septate junction regulator Moody causes increased drug efflux and up-regulation of the P-glycoprotein ortholog Mdr65; conversely, disruption of Mdr65 expression causes increased septate junction tightness and up-regulation of Moody. We reveal these homeostatic interactions with physiologic observations, gene expression data, and anatomical images of the BBB surface. Whole brain microarray data point to responses that are consistent with our physiologic observations and these responses are likely localized to the BBB. To our knowledge, this is the first observation of a reciprocal compensatory interaction at a tissue barrier. Furthermore, this study paves the way for future studies elucidating the direct pathways that link GPCR signaling and drug transporter regulation at the BBB.
Project description:Following the identification of a critical time window of Blood Brain Barrier formation in the mouse embryo, we aimed to identify genes important for barriergenesis. To this end, we isolated cortical and lung E13.5 endothelial cells and compared expression between the two populations. The working hypothesis was that endothelial cells which are actively building a barrier would have a uniqe pattern of gene expression that would be detectable in comparison to a non-barrier endothelial population that is also active in vasculogenesis. E13.5 Tie2-GFP embryos were micro-dissected for cortex and lungs. Cortex tissue was carefully cleared of the meninges and choroid plexus. FACS purification of GFP positive cells and GeneChip analysis was applied . All material from a single litter (10-13 embryos) was pooled and considered as a biological replicate. n=4 litters.
Project description:Bacterial meningitis is a serious infection of the CNS that results when blood-borne bacteria are able to cross the blood-brain barrier (BBB). Group B Streptococcus (GBS) is the leading cause of neonatal meningitis; however, the molecular mechanisms that regulate bacterial BBB disruption and penetration are not well understood. Here, we found that infection of human brain microvascular endothelial cells (hBMECs) with GBS and other meningeal pathogens results in the induction of host transcriptional repressor Snail1, which impedes expression of tight junction genes. Moreover, GBS infection also induced Snail1 expression in murine and zebrafish models. Tight junction components ZO-1, claudin 5, and occludin were decreased at both the transcript and protein levels in hBMECs following GBS infection, and this repression was dependent on Snail1 induction. Bacteria-independent Snail1 expression was sufficient to facilitate tight junction disruption, promoting BBB permeability to allow bacterial passage. GBS induction of Snail1 expression was dependent on the ERK1/2/MAPK signaling cascade and bacterial cell wall components. Finally, overexpression of a dominant-negative Snail1 homolog in zebrafish elevated transcription of tight junction protein-encoding genes and increased zebrafish survival in response to GBS challenge. Taken together, our data support a Snail1-dependent mechanism of BBB disruption and penetration by meningeal pathogens.