Project description:Desarmillaria tabescens is one of the most important edible, medicinal, and phytopathogenic basidiomycetes. The complete mitochondrial genome of this species was determined using next-generation sequencing technology. This mitogenome is a circular molecule of 93,439 bp with a GC content of 29.28% and contains 15 protein-coding, two rRNA (rnl and rns), and 24 tRNA genes. Phylogenetic analysis revealed that D. tabescens is genetically closest to Agrocybe aegerita. Desarmillaria tabescens mitogenome can contribute to our understanding of the phylogeny and evolution of this species.
Project description:Terpenoids constitute a structurally diverse class of secondary metabolites with wide applications in the pharmaceutical, fragrance and flavor industries. Desarmillaria tabescens CPCC 401429 is a basidiomycetous mushroom that could produce anti-tumor melleolides. To date, no studies have been conducted to thoroughly investigate the sesquiterpenes biosynthetic potential in Desarmillaria or related genus. This study aims to unravel the phylogeny, terpenome, and functional characterization of unique sesquiterpene biosynthetic genes of the strain CPCC 401429. Herein, we report the genome of the fungus containing 15,145 protein-encoding genes. MLST-based phylogeny and comparative genomic analyses shed light on the precise reclassification of D. tabescens suggesting that it belongs to the genus Desarmillaria. Gene ontology enrichment and pathway analyses uncover the hidden capacity for producing polyketides and terpenoids. Genome mining directed predictive framework reveals a diverse network of sesquiterpene synthases (STSs). Among twelve putative STSs encoded in the genome, six ones are belonging to the novel minor group: diverse Clade IV. In addition, RNA-sequencing based transcriptomic profiling revealed differentially expressed genes (DEGs) of the fungus CPCC 401429 in three different fermentation conditions, that of which enable us to identify noteworthy genes exemplified as STSs coding genes. Among the ten sesquiterpene biosynthetic DEGs, two genes including DtSTS9 and DtSTS10 were selected for functional characterization. Yeast cells expressing DtSTS9 and DtSTS10 could produce diverse sesquiterpene compounds, reinforced that STSs in the group Clade IV might be highly promiscuous producers. This highlights the potential of Desarmillaria in generating novel terpenoids. To summarize, our analyses will facilitate our understanding of phylogeny, STSs diversity and functional significance of Desarmillaria species. These results will encourage the scientific community for further research on uncharacterized STSs of Basidiomycota phylum, biological functions, and potential application of this vast source of secondary metabolites.
Project description:Forage grain contamination with aflatoxin B1 (AFB1) is a global problem, so its detoxification with the aim of providing feed safety and cost-efficiency is still a relevant issue. AFB1 degradation by microbial enzymes is considered to be a promising detoxification approach. In this study, we modified an previously developed Pichia pastoris GS115 expression system using a chimeric signal peptide to obtain a new recombinant producer of extracellular AFB1 oxidase (AFO) from Armillaria tabescens (the yield of 0.3 g/L), purified AFO, and selected optimal conditions for AFO-induced AFB1 removal from model solutions. After a 72 h exposure of the AFB1 solution to AFO at pH 6.0 and 30 °C, 80% of the AFB1 was degraded. Treatments with AFO also significantly reduced the AFB1 content in wheat and corn grain inoculated with Aspergillus flavus. In grain samples contaminated with several dozen micrograms of AFB1 per kg, a 48 h exposure to AFO resulted in at least double the reduction in grain contamination compared to the control, while the same treatment of more significantly (~mg/kg) AFB1-polluted samples reduced their contamination by ~40%. These findings prove the potential of the tested AFO for cereal grain decontamination and suggest that additional studies to stabilize AFO and improve its AFB1-degrading efficacy are required.