ABSTRACT: Reduced sulfide and methane in rising main sewer via calcium peroxide dosing: Insights from microbial physiological characteristics, metabolisms and community traits
Project description:Stress response of Methylococcus capsulatus str.Bath toward hydrogen sulfide (H2S) was investigated via physiological study and transcriptomic profiling. M. capsulatus (Bath) can grow and tolerate up to 0.75%vol H2S in headspace. Vast change in pH suggests biological relevant sulfide oxidation. Dozens of H2S-sensitive genes were identified from comparison of cell transcriptome in different H2S concentrations. Mc sulfide quinone reductase (SQR) and persulfide dioxygenase were found to be active during sulfide detoxification. Moreover, xoxF, a novel lanthanide(Ln)-dependent methanol dehydrogenase (MDH) was overexpressed in H2S while mxaF, a calcium-dependent MDH, was down-regulated, and such MDH switch phenomenon is also well known to be induced by addition of lanthanide via an as-yet-unknown mechanism. Activities in quorum sensing and RND efflux pump also suggest their role in sulfide detoxification, and might provide insight on the xoxF/mxaF switch mechanism.
Project description:Hydrogen sulfide is a gasotransmitter with biological functions, including roles in antioxidant defenses, mitochondrial bioenergetics and cellular signaling via cysteine persulfidation. Several longevity-promoting interventions enhance endogenous hydrogen sulfide generation. However, whether enhanced hydrogen sulfide generation extends healthspan and lifespan in mammals remains unknown. Here, we investigated the in vivo effects of the non-enzymatic hydrogen sulfide generation promoted by natural diallyl sulforated compounds. Diallyl sulforated compounds extended lifespan and improved the main aspects of healthspan, including glucoregulation, locomotor function and neurocognition in wild type male mice across their lifespan. At histological and molecular levels, we observed reductions in hepatic lipid-droplet size, attenuation of transcriptional and proteomic signatures associated with mTOR and immune-related pathways, and increased cysteine persulfidation in proteins. In humans, greater protein persulfidation in individuals with polypathological conditions was associated with increased muscle strength and lower triglyceride levels, supporting its physiological relevance. Our findings uncover the potential of enhanced hydrogen sulfide generation to promote healthy aging.
2025-12-19 | GSE284023 | GEO
Project description:Microbial community response to corrosion dosing treatments in sewer
Project description:Sulfate reducing bacteria (SRB), which can produce hydrogen sulfide in sewers, can lead to severe odor problems and asset deterioration due to the sulfide induced concrete corrion. Recently, free nitrou acid (FNA) has been discovered as a promising antimicrobial agent to inhibit SRB activities thereby limiting sulfide production in sewers. However, knowledge of bacteria response dynamics to the increasing levels of FNA is largely unkown.In this study, we detected the whole cell protein production and protein expression dynamics of D. vulgaris by SWATH-MS in the presence of four FNA concentrations (0, 1.0, 4.0 and 8.0 μg N/L) with three treatment time peirods after FNA addition (2, 8 and 12 h). From this a more comprehensive understanding of the FNA effects on D. vulgaris was obtained and the key determinants for withstanding FNA over incubation periods were verified in this sewer corrosion relevant strain.
Project description:As one of the most important environmental factors, heat stress (HS) has been found to affect various biological activities of organisms such as growth, signal transmission, primary metabolism and secondary metabolism. Ganoderma lucidum has become a potential model system for evaluating how environmental factors regulate the secondary metabolism of basidiomycetes. Previous research showed that HS can induce the biosynthesis of ganoderic acids (GAs). In this study, we found the existence of hydrogen sulfide in Ganoderma lucidum; moreover, HS increased GAs biosynthesis and could affect the hydrogen sulfide content. We found that sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, could revert the increased GAs biosynthesis elicited by HS. This result indicated that an increased content of hydrogen sulfide, within limits, was associated with HS-induced GAs biosynthesis. Our results further showed that the GAs content was increased in CBS-silenced strains and could be reverted to WT strain levels by the addition of NaHS. Transcriptomic analyses indicated that that H2S can affect various intracellular signal pathways and physiological processes in G. lucidum. Further studies showed that H2S could affect the intracellular calcium concentration and thus regulate the biosynthesis of GAs. This study demonstrated that hydrogen sulfide is involved in the regulation of secondary metabolic processes induced by heat stress in filamentous fungi.
2021-10-12 | GSE121270 | GEO
Project description:A novel technology employed to control sewer sulfide
Project description:Oxidative Stress Protection and the Repair Response To Hydrogen Peroxide in the Hyperthermophilic Archaeon Pyrococcus furiosus Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100°C. Addition of H2O2 (0.5 mM) to a growing culture resulted in cessation of growth with a 2 hour lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of 62 open reading frames (ORFs), 36 of which are part of 10 potential operons. More than half of the up-regulated ORFs are of unknown function while some others encode proteins that are involved potentially in sequestering iron and sulfide, in DNA repair and in generating NADPH. This response is thought to involve primarily damage repair rather than protection, since cultures exposed to sub-toxic levels of H2O2 were not more resistant to the subsequent addition of H2O2 (0.5 – 5.0 mM). Consequently, there is little if any induced protective response to peroxide, rather, the organism maintains a constitutive protective mechanism involving high levels of oxidoreductase-type enzymes such as superoxide reductase, rubrerythrin and alkyl hydroperoxide reductase I. The related hyperthermophiles P. woesei and Thermococcus kodakaraensis were more sensitive to peroxide than P. furiosus, apparently due to the lack of several of its peroxide-responsive ORFs.
2010-02-25 | GSE20470 | GEO
Project description:method for controlling sulfide and methane formation in sewer systems
Project description:Hydrogen sulfide is a gasotransmitter with biological functions, including roles in antioxidant defenses, mitochondrial bioenergetics and cellular signaling via cysteine persulfidation. Several longevity-promoting interventions enhance endogenous hydrogen sulfide generation. However, whether enhanced hydrogen sulfide generation extends healthspan and lifespan in mammals remains unknown. Here, we investigated the in vivo effects of the non-enzymatic hydrogen sulfide generation promoted by natural diallyl sulforated compounds. Diallyl sulforated compounds extended lifespan and improved the main aspects of healthspan, including glucoregulation, locomotor function and neurocognition in wild type male mice across their lifespan. At histological and molecular levels, we observed reductions in hepatic lipid-droplet size, attenuation of transcriptional and proteomic signatures associated with mTOR and immune-related pathways, and increased cysteine persulfidation in proteins. In humans, greater protein persulfidation in individuals with polypathological conditions was associated with increased muscle strength and lower triglyceride levels, supporting its physiological relevance. Our findings uncover the potential of enhanced hydrogen sulfide generation to promote healthy aging.
Project description:Oxidative Stress Protection and the Repair Response To Hydrogen Peroxide in the Hyperthermophilic Archaeon Pyrococcus furiosus Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100°C. Addition of H2O2 (0.5 mM) to a growing culture resulted in cessation of growth with a 2 hour lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of 62 open reading frames (ORFs), 36 of which are part of 10 potential operons. More than half of the up-regulated ORFs are of unknown function while some others encode proteins that are involved potentially in sequestering iron and sulfide, in DNA repair and in generating NADPH. This response is thought to involve primarily damage repair rather than protection, since cultures exposed to sub-toxic levels of H2O2 were not more resistant to the subsequent addition of H2O2 (0.5 â 5.0 mM). Consequently, there is little if any induced protective response to peroxide, rather, the organism maintains a constitutive protective mechanism involving high levels of oxidoreductase-type enzymes such as superoxide reductase, rubrerythrin and alkyl hydroperoxide reductase I. The related hyperthermophiles P. woesei and Thermococcus kodakaraensis were more sensitive to peroxide than P. furiosus, apparently due to the lack of several of its peroxide-responsive ORFs. Pyrococcus furiosus (DSM 3638) was grown at 95°C in a 20-liter fermentor using maltose as the carbon and energy source. An exponential-phase culture of P. furiosus that had undergone three successive transfers in the experimental medium was used to inoculate the 20-liter fermentor. The culture was shocked with 0.5 mM of hydrogen peroxide (H2O2) when cell density was in mid-exponential phase (~ 5.0 ´ 107 cells/ml, as determined by direct microscopic cell count). To obtain RNA for microarray and for quantitative PCR (QPCR) analyses, samples (2 liter) were rapidly removed from the fermentor and cooled to 4°C. Total RNA was extracted using acid-phenol and stored at -80°C until needed. A total of 3 biological replicates in triplicate (3 copies on the same slide) was used in the data set.