Project description:Competition among nitrate reducing bacteria (NRB) and sulfate reducing bacteria (SRB) for resources in anoxic environments is generally thought to be governed largely by thermodynamics. It is now recognized that intermediates of nitrogen and sulfur cycling (e.g., hydrogen sulfide, nitrite, etc.) can also directly impact NRB and SRB activities in freshwater, wastewater and sediment, and therefore may play important roles in competitive interactions. Here, using Intrasporangium calvum C5 as a model NRB, we performed comparative transcriptomic and metabolomic analyses to demonstrate that the reduced sulfur compounds cysteine and sulfide differentially inhibit respiratory growth on nitrate, and that inhibition by each can be selectively relieved by a specific carbon source. These findings provide mechanistic insights into the interplay and stratification of NRBs and SRBs in diverse environments.
Project description:Columns containing Hanford 100H aquifer sediment continuously infused with 5 mM lactate, 5 uM Cr(VI), and either 7.5 mM sulfate or 12 mM nitrate as an electron acceptor.
Project description:Abstract: Nanoparticles (NPs) are expected to make their way into the aquatic environment where sedimentation of particles will likely occur, putting benthic organisms at particular risk. Therefore, organisms such as Hyalella azteca, an epibenthic crustacean which forages at the sediment surface, is likely to have a high potential exposure. Here we show that Zinc Oxide (ZnO) NPs are more toxic to H. azteca compared with the corresponding metal ion, Zn2+. Dissolution of ZnO NPs contributes about 50% of the Zn measured in the ZnO NP suspensions, and cannot account for the toxicity of these particles to H. azteca. However, gene expression analysis is unable to distinguish between the ZnO NP exposures and Zinc Sulfate (ZnSO4) exposures at equitoxic concentrations. These results lead us to hypothesize that ZnO NPs provide and an enhanced exposure route for Zn2+ uptake into H. azteca, and possibly other sediment dwelling organisms. Our study supports the prediction that sediment dwelling organisms are highly susceptible to the effects of ZnO NPs and should be considered in the risk assessment of these nanomaterials.
Project description:Columns containing Hanford 100H aquifer sediment continuously infused with 5 mM lactate, 5 uM Cr(VI), and either 7.5 mM sulfate or 12 mM nitrate as an electron acceptor. A two-chip study using total RNA extracted from unfiltered effluent from columns (nitrate or sulfate infused).