Project description:To find the genes with significant expression changes after liver ischemia-reperfusion injury,we established a hypoxia-reoxygenation model using AML12 cells. We then performed gene expression profiling analysis using data obtained from RNA-seq under normoxia and hypoxia-reoxygenation conditions.
Project description:Purpose:Detection of differentially expressed lncRNA in the infarct zone and the control group in myocardial ischemia-reperfusion injury model tissue. Method: Use 8 weeks of C57BL/6 mice to establish a myocardial ischemia-reperfusion injury model, 45 minutes of ischemia, and 24 hours after reperfusion, the mice were sacrificed to obtain materials. Result: The expression of lncRNAs in the infarct area of myocardial ischemia-reperfusion injury model mice was detected, and it was found that a total of 43 lncRNAs related to myocardial ischemia-reperfusion injury changed in expression, of which 17 were up-regulated (fold change >1.5). 26 expressions are down-regulated (fold change <0.8)
Project description:Hepatic ischemia-reperfusion injury (IRI) is a common complication occurs during hepatic resection and transplantation. However, the mechanisms underlying hepatic IRI have not been fully elucidated. Here, we aim to explore the role of fibroblast growth factor 18 (FGF18) in hepatic IRI. In this work, we find that Hepatic stellate cells (HSCs) secrete FGF18 and alleviates hepatocytes injury. HSCs-specific FGF18 deletion largely aggravates hepatic IRI. Mechanistically, FGF18 treatment reduces the levels of ubiquitin carboxyl-terminal hydrolase 16 (USP16), leading to increased ubiquitination levels of Kelch Like ECH Associated Protein 1 (KEAP1) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, USP16 interacts and deubiquitinates KEAP1. More importantly, Nrf2 directly binds to the promoter of USP16 and forms a negative feedback loop with USP16. Collectively, our results show FGF18 alleviates hepatic IRI by USP16/KEAP1/Nrf2 signaling pathway in male mice, suggesting that FGF18 represents a promising therapeutic approach for hepatic IRI.
Project description:To identify the role of mRNA during myocardial ischemia-reperfusion in mice, we have employed high-throughput sequencing to detect mRNA expression. Samples were collected from the control group and the ischemia reperfusion groups , with 5 samples per group. The candidate mRNA that may affect the process of myocardial ischemia-reperfusion was screened by comparing the ischemia-reperfusion group and the control group.
Project description:Purpose: The aim of this study is to compare the plasma miRNA profile between mice subject to myocardial ischemia and reperfusion and mice subject to sham operation. Methods: 8 to 10-week old C57BL/6 mice underwent myocardial ischemia and reperfusion (MIR) or Sham operation. Plasma RNA was isolated using Trizol LS reagent 4h post-surgery. NGS cDNA libraries were prepared using Norgen Biotek Small RNA Library Prep Kit. Library quality was validated prior to sequencing on an Illumina NextSeq 500 platform.
Project description:Aims: Mesenchymal stem cells (MSCs) gradually become attractive candidates for cardiac inflammation modulation, yet understanding of the mechanism remains elusive. Strikingly, recent studies indicated that exosomes secreted by MSCs might be a novel mechanism for the beneficial effect of MSCs transplantation after myocardial infarction. We therefore explored the role of MSC-derived exosomes (MSC-Exo) in the immunomodulation of macrophages after myocardial ischemia-reperfusion and its implications in cardiac injury repair. Methods and Results: Exosomes were isolated from the supernatant of MSCs using a gradient centrifugation method. Administration of MSC-Exo through intramyocardial injection after myocardial ischemia reperfusion reduced infarct size and alleviated inflammation level in heart and serum. Systemic depletion of macrophages with clodronate liposomes abolished the curative effects of MSC-Exo. MSC-Exo modified the polarization of M1 macrophages to M2 macrophages both in vivo and in vitro. miRNA-sequencing of MSC-Exo and bioinformatics analysis implicated miR-182 as a potent candidate mediator of macrophage polarization and TLR4 as a downstream target. Diminishing miR-182 in MSC-Exo partially attenuated its modulation of macrophage polarization. Likewise, knock down of TLR4 also conferred cardioprotective efficacy and reduced inflammation level in a mouse model of myocardial ischemia/reperfusion. Conclusion: Our data indicates that MSC-Exo attenuates myocardial ischemia/reperfusion injury via shuttling miR-182 that modifies the polarization state of macrophages. This study sheds new light on the application of MSC-Exo a potential therapeutic tool for myocardial ischemia/reperfusion injury.
Project description:Proteomic analysis of protein expression changes in the hearts of diabetes-accelerated myocardial ischemia/reperfusion injury mice induced by USP22 overexpression using 4D-LabelFree technology.
Project description:NRVMs were subjected to varying durations of ischemia or ischemia+reperfusion using coverslip hypoxia. Expression profiling was used to identify genes that are differentially regulated in either event. We used microarrays to detail the global program of gene expression underlying ischemia and reperfusion using Coverslip Hypoxia and identified distinct classes of genes regulated during these processes. Experiment Overall Design: RNA was extracted from NRVMs subjected to varying durations of ischemia or ischemia+reperfusion and hybridized to rat genome Affymetrix arrays.