Project description:Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain "universal" 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of "microbial dark matter," or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.
Project description:Transcriptional profile of snails exposed to irradiated E. paraensei miricidia and four days later challenged with S. mansoni miricidia. Compared to snails exposed to only irradiated E. paraensei miricidia.
Project description:Transcriptional profile of BS-90 snails injected with a cocktail of four FREP3 specific 27-mer DSiRNA oligos and two hours later exposed to S. mansoni miricidia. Compared to BS-90 snails injected with a cocktail of three GFP specific DSiRNA oligos and two hours later exposed to S. mansoni miricidia. Experiments were done over the course of 49 days. Snails were collected (10each) at 2 and 4 dpe to S. mansoni for comparison.
Project description:The mechanisms underlying exercise-induced effects in the skeletal muscle during cancer cachexia progression have not been fully described. Here, we tested the hypothesis that different exercise training protocols could attenuate metabolic impairment in a severe model of cancer cachexia. Moderate-intensity training (MIT) and high-intensity interval training (HIIT) improved running capacity and prolonged lifespan in tumor-bearing rats. HIIT also reduced oxidative stress and reestablished muscle contractile function. An unbiased proteomics screening revealed that COP9 signalosome complex subunit 2 (COPS2), also known as thyroid receptor interacting protein 15 (TRIP15) or ALIEN, is one of the most downregulated proteins at the early stage of cancer cachexia progression. HIIT restored COPS2/TRIP15/ALIEN protein expression to the control levels. Moreover, lung cancer patients with low endurance capacity had lower muscle COPS2/TRIP15/ALIEN protein content compared to age- and sex-matched control subjects. We further established an in vitro model of cancer-induced muscle wasting using tumor cells-conditioned media to explore the potential protective role of COPS2/TRIP15/ALIEN for myotubes homeostasis. This in vitro model indicate that tumor cells produce factors that directly affect myotube metabolism, but COPS2/TRIP15/ALIEN overexpression is not able to fully reestablish metabolic homeostasis and protein content in myotubes incubated with tumor cells-conditioned media. The current study provides new insight into the role of exercise training as a co-therapy for cancer cachexia and uncovers COPS2/TRIP15/ALIEN as a novel potential target for cancer cachexia.
Project description:The microbiome associated with an animal's gut and other organs is considered an integral part of its ecological functions and adaptive capacity. To better understand how microbial communities influence activities and capacities of the host, we need more information on the functions that are encoded in a microbiome. Until now, the information about soil invertebrate microbiomes is mostly based on taxonomic characterization, achieved through culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics approaches we explored functions in the bacterial metagenome associated with the soil invertebrate Folsomia candida, an established model organism in soil ecology with a fully sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable diversity of genes associated with antimicrobial activity and carbohydrate metabolism. The microbiome also contains several homologs to F. candida genes that were previously identified as candidates for horizontal gene transfer (HGT). We suggest that the carbohydrate- and antimicrobial-related functions encoded by Folsomia's metagenome play a role in the digestion of recalcitrant soil-born polysaccharides and the defense against pathogens, thereby significantly contributing to the adaptation of these animals to life in the soil. Furthermore, the transfer of genes from the microbiome may constitute an important source of new functions for the springtail.
Project description:Transcriptional profiles of snails sized 12-20mm exposed to E. paraensei and unexposed controls Keywords: Dose response Five individual snails from the treatment group were analyzed at 12hours, 1, 2, 4, 8, and 16 days. Five unexposed control snails were also analyzed.
Project description:We conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input (HIF) vs low-input (LIF) field conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were Stenactis annua, Erigeron canadensis and Solidago canadensis. These species were hosts predominantly for the aphids Brachycaudus helichrysi and Aulacorthum solani in both management systems. The 13% higher coverage of S. annua under LIF conditions resulted in a 30% higher B. helichrysi abundance and ~85% higher A. solani abundance compared with HIF conditions. To reveal virus infection in crop plants and invasive weeds high-throughput sequencing of small RNAs were carried out. Bioinformatics analysis of the results detected the presence of 16 important plant viruses, but not resulting strikingly different pattern under LIF and HIF. This could suggest that invasive weeds serves as a virus reservoir both under low and high input management systems. The lake of any management increases virus vector aphids abundances, their presence has a great impact on the viromes of the crops.