Project description:The Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes which share functions in the innate immune system. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this important immunomodulatory region. Using 4C-seq, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topological associated domains (TADs). Interestingly, the inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we uncovered an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells simultaneously. Here, we highlight novel, long-range mechanisms whereby SLE susceptibility may be influenced by genetic variants, and the important contribution of chromatin topology to gene regulation and complex genetic disease.
Project description:Mouse androgenetic haploid embryonic stem cells (mAG-haESCs) can be utilized to uncover gene functions, especially those of genes with recessive effects, and to produce semicloned mice when injected into mature oocytes. However, mouse haploid cells undergo rapid diploidization during long-term culture in vitro and subsequently lose the advantages of haploidy and the factors that drive diploidization are not well understood. In this study, we compared the small RNAs (sRNAs) of mAG-haESCs, normal ESCs and mouse round spermatids by high-throughput sequencing and identified distinct sRNA profiles. Several let-7 family members and miR-290-295 cluster miRNAs were found significantly differentially transcribed. Knockdown and overexpression experiments showed that let-7a and let-7g suppress diploidization while miR-290a facilitates diploidization. Our study revealed the unique sRNA profile of mAG-haESCs and demonstrated that let-7a overexpression can mitigate diploidization in mAG-haESCs. These findings will help us to better understand mAG-haESCs and utilize them as a tool in the future.
Project description:Transcriptional profiling of populations in the clam Ruditapes decussatus determined differentiation in gene-expression along parallel temperature gradients and between races of the Atlantic Ocean and West Mediterranean sea.
Project description:The largest of the tuna species, Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely through overfishing. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. In order to provide a resource for ongoing studies, we have used 454 pyrosequencing technology to sequence a mixed-tissue normalized cDNA library, derived from adult individuals. Transcript sequences were used to develop a novel 15K Agilent oligo microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes.
Project description:This project presents field metaproteomics data from Trichodesmium colonies collected from the surface ocean. Most were collected from the tropical and subtropical Atlantic ocean, but there is also data from the long term Bermuda Atlantic Time Series and Hawaii Ocean Time Series. Trichodesmium is a globally important marine microbe and its growth and nitrogen fixation activity is limited by nutrient availability in the surface ocean. This dataset was generated to answer questions about limitations on Trichodesmium's growth and activity in the nature.
Project description:Metaproteomics is an increasingly popular methodology that provides information regarding the metabolic functions of specific microbial taxa and can be used to assess environmental stressors and change and has potential for contributing to ocean ecology and biogeochemical studies. To enable future large-scale studies, a multi-laboratory intercomparison was conducted to assess comparability and reproducibility of taxonomic and functional results and their sensitivity to methodological variables. This ocean metaproteomic intercomparison consisted of two major activities: a laboratory component, where independent labs processed identical ocean samples simultaneously collected from the North Atlantic Ocean , and a subsequent informatic component.
Project description:Metaproteomics is an increasingly popular methodology that provides information regarding the metabolic functions of specific microbial taxa and can be used to assess environmental stressors and change and has potential for contributing to ocean ecology and biogeochemical studies. To enable future large-scale studies, a multi-laboratory intercomparison was conducted to assess comparability and reproducibility of taxonomic and functional results and their sensitivity to methodological variables. This ocean metaproteomic intercomparison consisted of two major activities: a laboratory component, where independent labs processed identical ocean samples simultaneously collected from the North Atlantic Ocean , and a subsequent informatic component.
Project description:Transcription profiiling of arabidopsis transgenic Rca-T78S comparing Control WT plant (Rca-T78). Rca is Rubisco activase and Threonine78 residue of Rca is phosphorylated only in the dark. However, Serine substituted Rca (T78S) was phosphorylated even in the light. Thus, Rca-T78 or Rca-T78S expressing plants which were exposed light for an hour were harvested to check gene expression pattern