Project description:Right ventricular free wall (RVFW) pacing results in left ventricular dyssynchrony with early septal shortening followed by late lateral contraction that reciprocally stretches the septum. Dyssynchrony is disadvantageous to cardiac mechano-energetics, yet little is known about its molecular consequences. We tested the hypothesis that dyssynchrony selectively alters regional gene expression in mice, employing a novel miniature implantable cardiac pacemaker. Mice were subjected to 1-week overdrive RVFW pacing (720 min-1, baseline HR 520-620 min-1) to induce dyssynchrony (pacemaker: 3V lithium battery, rate programmable, 0.8 grams, bipolar lead). Electrical capture was confirmed by pulsed-wave Doppler at implantation and terminal study, and dyssynchrony by echocardiography. Gene expression from left ventricular septal and lateral-wall myocardium were assessed by microarray (dual-dye method, Agilent) using oligonucleotide probes and dye swap. Identical analysis was applied to 4 synchronously contracting controls. Of 22,000 genes surveyed, only 18 genes displayed significant (p<0.01) differential expression between septal/lateral walls exceeding 1.5-fold relative to any disparities in synchronous controls. These changes were confirmed by qPCR with excellent correlations. Most (16) of the genes showed greater septal expression. Of particular interest were 7 genes coding proteins involved with stretch responses, matrix remodeling, stem cell differentiation to myocyte lineage, and Purkinje fiber differentiation. One-week cardiac dyssynchrony triggers regional differential expression differences in relatively few select genes. Such analysis using a murine implantable pacemaker should facilitate molecular studies of cardiac dyssynchrony and help elucidate novel mechanisms by which stress/stretch stimuli due to dyssynchrony impact the normal and failing heart. Keywords: Murine cardiac dyssynchrony and differential gene expression, Agilent, microarray, pacing
Project description:Right ventricular free wall (RVFW) pacing results in left ventricular dyssynchrony with early septal shortening followed by late lateral contraction that reciprocally stretches the septum. Dyssynchrony is disadvantageous to cardiac mechano-energetics, yet little is known about its molecular consequences. We tested the hypothesis that dyssynchrony selectively alters regional gene expression in mice, employing a novel miniature implantable cardiac pacemaker. Mice were subjected to 1-week overdrive RVFW pacing (720 min-1, baseline HR 520-620 min-1) to induce dyssynchrony (pacemaker: 3V lithium battery, rate programmable, 0.8 grams, bipolar lead). Electrical capture was confirmed by pulsed-wave Doppler at implantation and terminal study, and dyssynchrony by echocardiography. Gene expression from left ventricular septal and lateral-wall myocardium were assessed by microarray (dual-dye method, Agilent) using oligonucleotide probes and dye swap. Identical analysis was applied to 4 synchronously contracting controls. Of 22,000 genes surveyed, only 18 genes displayed significant (p<0.01) differential expression between septal/lateral walls exceeding 1.5-fold relative to any disparities in synchronous controls. These changes were confirmed by qPCR with excellent correlations. Most (16) of the genes showed greater septal expression. Of particular interest were 7 genes coding proteins involved with stretch responses, matrix remodeling, stem cell differentiation to myocyte lineage, and Purkinje fiber differentiation. One-week cardiac dyssynchrony triggers regional differential expression differences in relatively few select genes. Such analysis using a murine implantable pacemaker should facilitate molecular studies of cardiac dyssynchrony and help elucidate novel mechanisms by which stress/stretch stimuli due to dyssynchrony impact the normal and failing heart. Experiment Overall Design: Left ventricle segments from the mouse heart - septal and lateral, were isolated from 4 dyssynchronous mice that were kept separate. RNA from the synchronous mice were pooled into a control septal and lateral sample. Functional genomic analysis was conducted on these 10 RNA samples with fluorophore reversal, such that each sample was assayed on two different microarrays. Corresponding septal and lateral samples from the same heart were paired on the same microarray to measure the relative differences in gene expression between the different regions of the heart then differences were compared across multiple mice to find overlapping genes that were affected by the pacememaker implantation.
Project description:Objectives: To test whether (1) electromechanical dyssynchrony induces region-specific alterations in the myocardial transcriptome and (2) dyssynchrony-induced gene expression changes can be corrected by cardiac resynchronization (CRT). Background: To date, CRT is the only heart failure treatment that can both acutely and chronically increase systolic function and prolong survival, something not yet achieved by a drug therapy. However, the mechanisms underlying the benefits of CRT remain elusive. Methods: Adult dogs underwent left bundle branch ablation (LBBB) and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, DHF, n=12) or 3 weeks followed by 3 weeks of resynchronization by bi-ventricular pacing at the same pacing rate (CRT, n=10). Control animals without LBBB were not paced (NF, n=14). Echocardiography and invasive hemodynamic measurements were performed at 3 and 6 weeks. At 6 weeks, RNA was isolated from the anterior and lateral LV walls and hybridized onto canine-specific 44K microarrays. Results: In DHF, transcriptional changes consistent with re-expression of a fetal gene program were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the left ventricle. Dyssynchrony-induced region-specific expression changes in 1050 transcripts were reversed by CRT to levels of NF hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression compared with DHF. Conclusions: Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall by reversing the fetal gene expression pattern, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall. Complementary study to GSE14327. While GSE14327 was designed as a 1-color microarray experiment, this series was carried out following a 2-color design (anterior and lateral LV wall labeled with Cy3 and Cy5, respectively, including dye swaps).
Project description:Objectives: To test whether (1) electromechanical dyssynchrony induces region-specific alterations in the myocardial transcriptome and (2) dyssynchrony-induced gene expression changes can be corrected by cardiac resynchronization (CRT). Background: To date, CRT is the only heart failure treatment that can both acutely and chronically increase systolic function and prolong survival, something not yet achieved by a drug therapy. However, the mechanisms underlying the benefits of CRT remain elusive. Methods: Adult dogs underwent left bundle branch ablation (LBBB) and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, DHF, n=12) or 3 weeks followed by 3 weeks of resynchronization by bi-ventricular pacing at the same pacing rate (CRT, n=10). Control animals without LBBB were not paced (NF, n=14). Echocardiography and invasive hemodynamic measurements were performed at 3 and 6 weeks. At 6 weeks, RNA was isolated from the anterior and lateral LV walls and hybridized onto canine-specific 44K microarrays. Results: In DHF, transcriptional changes consistent with re-expression of a fetal gene program were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the left ventricle. Dyssynchrony-induced region-specific expression changes in 1050 transcripts were reversed by CRT to levels of NF hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression compared with DHF. Conclusions: Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall by reversing the fetal gene expression pattern, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall. Designed as a 1-color experiments, samples from anterior and lateral left ventricular myocardium from non-failing, DHF and CRT animals were labeled with Cy3 and hybridized onto Agilent 44K long oligonucleotide arrays.
Project description:Objectives: To test whether (1) electromechanical dyssynchrony induces region-specific alterations in the myocardial transcriptome and (2) dyssynchrony-induced gene expression changes can be corrected by cardiac resynchronization (CRT). Background: To date, CRT is the only heart failure treatment that can both acutely and chronically increase systolic function and prolong survival, something not yet achieved by a drug therapy. However, the mechanisms underlying the benefits of CRT remain elusive. Methods: Adult dogs underwent left bundle branch ablation (LBBB) and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, DHF, n=12) or 3 weeks followed by 3 weeks of resynchronization by bi-ventricular pacing at the same pacing rate (CRT, n=10). Control animals without LBBB were not paced (NF, n=14). Echocardiography and invasive hemodynamic measurements were performed at 3 and 6 weeks. At 6 weeks, RNA was isolated from the anterior and lateral LV walls and hybridized onto canine-specific 44K microarrays. Results: In DHF, transcriptional changes consistent with re-expression of a fetal gene program were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the left ventricle. Dyssynchrony-induced region-specific expression changes in 1050 transcripts were reversed by CRT to levels of NF hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression compared with DHF. Conclusions: Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall by reversing the fetal gene expression pattern, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall.
Project description:Objectives: To test whether (1) electromechanical dyssynchrony induces region-specific alterations in the myocardial transcriptome and (2) dyssynchrony-induced gene expression changes can be corrected by cardiac resynchronization (CRT). Background: To date, CRT is the only heart failure treatment that can both acutely and chronically increase systolic function and prolong survival, something not yet achieved by a drug therapy. However, the mechanisms underlying the benefits of CRT remain elusive. Methods: Adult dogs underwent left bundle branch ablation (LBBB) and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, DHF, n=12) or 3 weeks followed by 3 weeks of resynchronization by bi-ventricular pacing at the same pacing rate (CRT, n=10). Control animals without LBBB were not paced (NF, n=14). Echocardiography and invasive hemodynamic measurements were performed at 3 and 6 weeks. At 6 weeks, RNA was isolated from the anterior and lateral LV walls and hybridized onto canine-specific 44K microarrays. Results: In DHF, transcriptional changes consistent with re-expression of a fetal gene program were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the left ventricle. Dyssynchrony-induced region-specific expression changes in 1050 transcripts were reversed by CRT to levels of NF hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression compared with DHF. Conclusions: Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall by reversing the fetal gene expression pattern, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Keywords: wildtype vs Myc-null