Project description:We investigated the metabolism of six secondary metabolite producing fungi of the Penicillium genus, during nutrient depletion in the stationary phase of batch fermentations and assessed conserved metabolic responses across species using genome-wide transcriptional profiling. Coexpression analysis revealed that expression of secondary metabolite biosynthetic genes correlates with expression of genes associated with pathways responsible for generation of precursor metabolites for secondary metabolism. Our results highlight the main metabolic routes for precursor supply of the secondary metabolism during nutrient depletion, and suggests that regulation of fungal metabolism is tailored to meet the demands for secondary metabolite production. These findings can aid in identifying wild type species, which are optimized for production of specific secondary metabolites, and therefore can be utilized as high yielding cell factories.
Project description:Histone modifications have been shown to be crucial for secondary metabolism in various filamentous fungi. Here we studied the influence of histone acetylation on secondary metabolite production in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites including pigments and mycotoxins. Deletion of the classical HDACs FfHdF1, FfHdF2 and FfHdF3 indicated that FfHdF1 and FfHdF2 are major regulators of secondary metabolism, whereas FfHdF3 is involved in developmental processes but dispensable for secondary metabolite production in F. fujikuroi. Microarray analysis with the major HDAC FfHdF2 revealed differential regulation of several secondary metabolite gene clusters, subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are responsible for gene silencing but also gene activation. Chromatin immunoprecipitation assays with M-NM-^TffhdF2 revealed significant alterations regarding the acetylation state in the landscape of secondary metabolite gene clusters thereby providing insights into the regulatory mechanism. In addition, the class I HDAC FfHdF1 also has major impact on secondary metabolism in F. fujikuroi. Furthermore, deletion of both ffhdF1 and ffhdF2 resulted in de-repression of secondary metabolites under normally repressing conditions. Thus, manipulation of HDAC encoding genes might provide a powerful tool for the activation of cryptic secondary metabolites. Investigation of whole genome gene expression of the Fusarium fujikuroi wild type IMI58289, M-NM-^TffhdF2 mutant under nitrogen starvation and nitrogen sufficient conditions. In this study we hybridized in total 12 microarrays using total RNA recovered from a wild-type culture of F. fujikuroi IMI58289 and M-NM-^TffhdF2 mutant culture. All cultures were grown on a 6 mM Gln (10%) and a 60 mM Gln medium (100%). For each combination of culture and medium a biological replicate was created. Each chip measures the expression level of 14,397 genes from F. fujikuroi IMI58289 with eight 60-mer probes.
Project description:Histone modifications have been shown to be crucial for secondary metabolism in various filamentous fungi. Here we studied the influence of histone acetylation on secondary metabolite production in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites including pigments and mycotoxins. Deletion of the classical HDACs FfHdF1, FfHdF2 and FfHdF3 indicated that FfHdF1 and FfHdF2 are major regulators of secondary metabolism, whereas FfHdF3 is involved in developmental processes but dispensable for secondary metabolite production in F. fujikuroi. Microarray analysis with the major HDAC FfHdF2 revealed differential regulation of several secondary metabolite gene clusters, subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are responsible for gene silencing but also gene activation. Chromatin immunoprecipitation assays with ΔffhdF2 revealed significant alterations regarding the acetylation state in the landscape of secondary metabolite gene clusters thereby providing insights into the regulatory mechanism. In addition, the class I HDAC FfHdF1 also has major impact on secondary metabolism in F. fujikuroi. Furthermore, deletion of both ffhdF1 and ffhdF2 resulted in de-repression of secondary metabolites under normally repressing conditions. Thus, manipulation of HDAC encoding genes might provide a powerful tool for the activation of cryptic secondary metabolites. Investigation of whole genome gene expression of the Fusarium fujikuroi wild type IMI58289, ΔffhdF2 mutant under nitrogen starvation and nitrogen sufficient conditions.
2013-10-05 | GSE43768 | GEO
Project description:Ecology and Evolution of Bacillus subtilis secondary metabolite
Project description:To investigate the effect of bldA deletion on gene expression in Streptomyces iranensis with respect to secondary metabolite cluster genes
2022-08-01 | GSE201630 | GEO
Project description:The analysis of secondary metabolite gene clusters in sponge metagenomics