Project description:Cotton is the most important economic crop that provides natural fibre and by-products such as oil and protein. The global gene expression could provide insight into the biological processes underlying growth and development, which involving suites of genes expressed with temporal and spatial controls by regulatory networks. Improvement of cotton fiber in yield and quality is the main goal for molecular breeding, but many previous research have been largely focused on identifying genes only in fibres, so that we ignore seed which may play an important role in the development of fibers. In this study, we constructed and systematically analyzed twenty-one strand-specific RNA-Seq libraries on Gossypium hirsutum L. covering different tissues, organs and development stages, of which approximately 970 million reads were generated. In total, 5,6754 transcripts derived from 2,9541 unigenes were obtained to provide a global view of gene expression for cotton development. Hierarchical clustering of transcriptional profiles suggests that transcriptomes among tissues or organs corresponded well to their developmental relatedness. The organ (tissue)-specific gene expressions were investigated efficiently and provided further insight into the dynamic programming of the transcriptome, in particularly for coordinating development between fiber cell and seed (ovule). We identified series of transcription factors and seed-specific genes, which as the candidate genes should help elucidate key mechanisms and regulatory networks that underlie fiber and seed development. This report identified comprehensive transcriptome changes in different stage of cotton development and will serves as a valuable genome-wide transcriptome resource for cotton breeding.
Project description:Cotton is the most important economic crop that provides natural fibre and by-products such as oil and protein. The global gene expression could provide insight into the biological processes underlying growth and development, which involving suites of genes expressed with temporal and spatial controls by regulatory networks. Improvement of cotton fiber in yield and quality is the main goal for molecular breeding, but many previous research have been largely focused on identifying genes only in fibres, so that we ignore seed which may play an important role in the development of fibers. In this study, we constructed and systematically analyzed twenty-one strand-specific RNA-Seq libraries on Gossypium hirsutum L. covering different tissues, organs and development stages, of which approximately 970 million reads were generated. In total, 5,6754 transcripts derived from 2,9541 unigenes were obtained to provide a global view of gene expression for cotton development. Hierarchical clustering of transcriptional profiles suggests that transcriptomes among tissues or organs corresponded well to their developmental relatedness. The organ (tissue)-specific gene expressions were investigated efficiently and provided further insight into the dynamic programming of the transcriptome, in particularly for coordinating development between fiber cell and seed (ovule). We identified series of transcription factors and seed-specific genes, which as the candidate genes should help elucidate key mechanisms and regulatory networks that underlie fiber and seed development. This report identified comprehensive transcriptome changes in different stage of cotton development and will serves as a valuable genome-wide transcriptome resource for cotton breeding. Examination of transcriptome of cotton
Project description:A cDNA library from 0-10 day post anthesis cotton ovules was established to study genes expressed in cotton ovule during initiation and quickly elongation period. We randomly sequenced over 100,000 ESTs from this library and acquired a gene pool of more than 28,000 UniESTs. The cotton UniESTs were then PCR-amplified and printed onto microarray. This array is comprised of about 28000 high-quality cotton cDNAs (with average length>750bp) and external controls. To study the different growth potential of cotton fibers in a one-year cycle, we then hybridized the array with RNA samples derived from +7 DPA wild-type upland cotton fibers in four different seasons, respectively.