Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:Reprogramming a non-methylotrophic industrial host, such as Saccharomyces cerevisiae, to a synthetic methylotroph reprents a huge challenge due to the complex regulation in yeast. Through TMC strategy together with ALE strategy, we completed a strict synthetic methylotrophic yeast that could use methanol as the sole carbon source. However, how cells respond to methanol and remodel cellular metabolic network on methanol were not clear. Therefore, genome-scale transcriptional analysis was performed to unravel the cellular reprograming mechanisms underlying the improved growth phenotype.
Project description:To characterize cellular response to the anti-cancer ruthinium complex KP1019, budding yeast Saccharomyces cerevisiae transcripitonal response to KP1019 was measured using microarray analysis. Although KP1019 molecular mechanism of action remains a matter of debate, the drug has been shown to bind DNA in biophysical assays and to damage DNA of colorectal and ovarian cancer cells in vitro. KP1019 has also been shown to induce mutations and induce cell cycle arrest in Saccharomyces cerevisiae, suggesting that budding yeast can serve as an appropriate model for characterizing the cellular response to the drug. Here we use a transcriptomic approach to characterize KP1019 induced transcriptional changes.
Project description:We developed an artificial genome evolution system, which we termed ‘TAQing’, by introducing multiple genomic DNA double-strand breaks using a heat-activatable endonuclease in mitotic yeast. The heat-activated endonuclease, TaqI, induced random DSBs, which resulted in diverse types of chromosomal rearrangements including translocations. Array comparative genomic hybridization (aCGH) analysis was performed with cell-fused Saccharomyces cerevisiae strains induced genome evolution by TAQing system. Some of copy number variations (CNVs) induced by massive genome rearrangements were detected in the TAQed yeast strains.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:We investigated the genome-wide distribution of Okazaki fragments in the commonly used laboratory Saccharomyces cerevisiae strain S288C to study the DNA replication model adopted by the budding yeast. The method based upon lambda exonuclease digestion for purification of RNA-primed replication intermediates was first improved to be suitable for the purification of Okazaki fragments. Then, we used this improved method to purify Okazaki fragments from S288C yeast cells, followed by Illumina sequencing. We found that the expected asymmetric distribution of Okazaki fragments around confirmed replication origins, which was derived from the semi-discontinuous DNA replication model, was not observed on S. cerevisiae chromosomes. Even around two highly efficient replication origins, ARS522 and ARS416, the ratios of Okazaki fragments on both strands were inconsistent with the semi-discontinuous DNA replication model. Our study supported the discontinuous DNA replication model. Besides, we also observed that Okazaki fragments were overpresented in the transcribed regions in S. cerevisiae mitochondrial genome, which indicated the interplay between transcription and DNA replication.
Project description:Yeast mannoproteins contribute to several aspects of wine quality by protecting wine against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The selection of a yeast strain simultaneously overproducing mannoproteins and showing good fermentative characteristics is a difficult task. In this work, a Saccharomyces cerevisiae x Saccharomyces cerevisiae hybrid bearing the two oenologically relevant features was constructed and a reduction in the amount of bentonite necessary for wine stabilization was observed for wines fermented with the generated strain. Additionally, different copy numbers of some genes probably related with these physiological features were detected in this hybrid. Hybrid share with parental Sc1 similar copy number of genes SPR1, SWP1, MNN10 and YPS7 related to cell wall integrity and with parental Sc2 similar copy number of some glycolytic genes as GPM1 and HXK1 as well as genes involved in hexose transport as HXT9, HXT11 and HXT12. This work demonstrates that artificial hybridization and stabilization in winemaking conditions constitute an effective approach to obtain yeast strains with desirable physiological features as mannoprotein overproducing capacity and improved fermentation performance, characteristics genetically depending on the coordinated expression of a multitude of different genes. In this work, genetically stable mannoprotein overproducing Saccharomyces cerevisiae strains simultaneously showing excellent fermentation capacities were obtained by hybridization methods giving rise to non-GMO strains. The potential relationship between the copy number of specific genes and the improved features was also evaluated by means of aCGH analysis of parental and hybrid strains.