Project description:In this work, we have used deep sequencing to study the viral small RNA (vsiRNA) populations from different mycoviruses infecting field isolates of Botrytis spp. The mycoviruses under study belong to different genera and species and have different type of genome (dsRNA, (+)ssRNA, and (-)ssRNA). In general, vsiRNAs derived from mycoviruses are mostly of 21, 20 and 22 nucleotides in length, possess sense or antisense orientation either in a similar ratio or with a predominance of sense polarity depending on the virus species, have predominantly U at their 5' end, and are unevenly distributed along the viral genome showing conspicuous hotspots of vsiRNA accumulation. These characteristics reveal striking concomitances with vsiRNAs produced by plant viruses suggesting similar pathways of viral targeting in plants and fungi
Project description:Botrytis cinerea (gray mold) is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protec-tion and is essential for controlling tomato gray mold. The emergence of fungicide-resistant strains has made the control of Botrytis cinerea more difficult. While the genome of Botrytis cinerea is available, there are few reports regarding the large-scale functional annotation of the genome using expressed genes derived from transcriptomes, and the mechanism(s) underlying such flu-dioxonil resistance remain unclear. The present study prepared RNA-sequencing (RNA-seq) li-braries for three Botrytis cinerea strains [two highly resistant (LR and FR) versus one highly sen-sitive (S) to fludioxonil], with and without fludioxonil treatment, to identify fludioxonil responsive genes that facilitate fungicide resistance. Functional enrichment analysis identified nine resistant related DEGs in the fludioxonil-induced LR and FR transcriptome that were simultaneously up regulated, and seven resistant related DEGs down regulated. These included adenosine tri-phosphate (ATP)-binding cassette (ABC) transporter-encoding genes, major facilitator super-family (MFS) transporter-encoding genes, and the high-osmolarity glycerol (HOG) pathway homologues or related genes. The expression patterns of twelve out of the sixteen fludioxo-nil-responsive genes, obtained from the RNA-sequence data sets were validated using quantita-tive real-time PCR (qRT-PCR). Based on RNA-sequence analysis it was found that fugal HHKs, like BOS1, BcHHK2, and Bchhk17, were in some way involved in the fludioxonil resistance of B. cinerea, in addition, a number of ABC and MFS transporter genes that were not reported before, such as BcATRO, BMR1, BMR3, BcNMT1, BcAMF1, BcTOP1, BcVBA2, and BcYHK8 were differen-tially expressed in the fludioxonil-resistant strains, indicating that overexpression of these efflux transporters located in the plasma membranes played a crucial role in the fludioxonil resistant mechanism of B. cinerea. These lines of evidence together allowed us to draw a general portrait of the anti-fludioxonil mechanisms for Botrytis cinerea, and the assembled and annotated transcrip-tome data provide valuable genomic resources for further study of the molecular mechanisms of B. cinerea resistance to fludioxonil.
Project description:Full transcriptomes of the Botrytis cinerea wild-type strain B0510 and the null-mutants deltaBcVEL1 and deltaBcLAE1, cultured onto solid grape juice medium with cellophane overlays , were compared to identify BcVEL1 or/and BcLAE1-dependent genes. The Botrytis cinerea wild-type strain and the null-mutants deltaBcVEL1 and BcLAE1 were cultured for 48h onto solid grape juice medium with cellophane overlays. 4 replicates were performed. The 12 total-RNA samples (3 strains* 4 replicates) were used for hybridization on NimbleGen 4plex gene expression arrays (20,885 gene models from Botrytis cinerea with three 60-mer probes per gene).
Project description:Purpose: The goals of this study are using RNA-seq to obtain cucumber and Botrytis cinerea transcriptome changes during infection Methods: mRNA profiles of anti-infection samples and interaction sample were generate by deep sequencing,using Illumina Hiseq 2500. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: BurrowsâWheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRTâPCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow,In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber (differential expression genes) DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. Conclusions:To the best of our knowledge, this is the first analysis of large-scale transcriptome changes of cucumber during the infection of Botrytis cinerea. These results will increase our understanding of the molecular mechanisms of the cucumber defense Botrytis cinerea and may be used to protect plants against disasters caused by necrotrophic fungal pathogens. mRNA profiles of infection and anti-infection cucumber were generated by deep sequencing, using Illumina Hiseq 2500 .
Project description:Investigation of whole genome gene expression level changes in Botrytis cinerea wild type conidia during germination in comparison to the bmp1 MAP kinase deletion mutant. A 18 chip study using total RNA recovered from four different time points for the wild-type and one time point for the bmp1 deletion mutant. Each time point was analyzed with three biological replicates. Expression level of 20,885 genes from Botrytis cinerea strain B05.10 and T4 with three 60mer probes per gene was analysed.
Project description:Sets of small RNAs from strains of Botrytis cinerea isolated from tomato or grapevine were compared to determine whether some small RNAs were specific to a population. The small RNAs were mapped to the retrotransposons identified in Sl3, Vv3 or B05.10 genomes.
Project description:Next generation sequencing (NGS) was performed to identify genes changed in ginseng upon Botrytis cinerea △BcSpd1 treatment. The goal of the work is to find interesting genes involved in ginseng in response to fungi induction. The object is to reveal the molecular mechanism of ginseng defense induced by Botrytis cinerea △BcSpd1 .
Project description:Purpose: The goals of this study are using RNA-seq to obtain cucumber and Botrytis cinerea transcriptome changes during infection Methods: mRNA profiles of anti-infection samples and interaction sample were generate by deep sequencing,using Illumina Hiseq 2500. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using SYBR Green assays Results: Using an optimized data analysis workflow,In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber (differential expression genes) DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. Conclusions:To the best of our knowledge, this is the first analysis of large-scale transcriptome changes of cucumber during the infection of Botrytis cinerea. These results will increase our understanding of the molecular mechanisms of the cucumber defense Botrytis cinerea and may be used to protect plants against disasters caused by necrotrophic fungal pathogens.