Project description:The potato is susceptible to water stress at all stages of development. We examined four clones of tetraploid potato, Cardinal, Desirée, Clone 37 FB and Mije, from the germplasm bank of the National Institute of Agricultural Research (INIA) in Chile. Water stress was applied by suspending irrigation at the beginning of tuberization. Stomatal conductance, tuber and plant fresh and dry weight was used to categorize water stress tolerance. Cardinal had high susceptibility to water stress. Desirée was less suscepetible than Cardinal and had some characteristics of tolerance. Mije had moderate and Clon 37 FB high tolerance. Differential gene expression in leaves from plants with and without water stress were examined using transcriptome sequencing. Water stress susceptible Cardinal had the fewest differentially expressed genes at 101, compared to Desirée at 1867, Clon 37 FB at 1179 and Mije at 1010. Water stress tolerance was associated with up-regulation of expression of transcription factor genes and genes involved in osmolyte and polyamine biosynthesis. Increased expression of genes encoding late embryogenesis abundant (LEA) and dehydrin proteins along with decreased expression of genes involved in nitrate assimilation and amino acid metabolism were found for clones showing water stress tolerance. The results also show that water deficit was associated with reduced biotic stress responses. Additionally, heat shock protein genes were differentially expressed in all clones except for highly susceptible Cardinal. Together the gene expression study demonstrates variation in the molecular pathways and biological processes in response to water stress contributing to tolerance and susceptibility.
Project description:Ultrasound (US) can influence plant growth and development. To better understand the genetic mechanism underlying the physiological response of potato to US, single-node segments of four-week-old in vitro plantlets were subjected to US at 35 kHz for 20 min. Following mRNA purification, 10 cDNA libraries were assessed by RNA-seq and significantly differentially expressed genes (DEGs) were categorized by gene ontology (GO) or Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers. The expression intensity of 40,430 genes from a total pool of 45,112 genes were studied. From these, several hundred genes associated with biosynthesis, carbohydrate metabolism and catabolism, cellular protein modification, and response to stress, and expressed mainly in the extracellular region, nucleus, and plasma membrane, were either up- or down-regulated in response to US. This study examines how some processes evolved over time (0 h, 24 h, 48 h, 1 week and 4 weeks) after an abiotic stress (US) was imposed on in vitro potato explants, and provides important clues to the temporal dynamics in enzyme and DEG profiles in response to this stress as the explant becomes established in vitro. Despite this abiotic stress, plantlets survived.
Project description:Phloem localization of plant viruses is advantageous for acquisition by sap-sucking vectors but hampers host-virus protein interaction studies. In this study, Potato leafroll virus (PLRV)-host protein complexes were isolated from systemically infected potato, a natural host of the virus. Comparing two different co-immunoprecipitation support matrices coupled to mass spectrometry, we identified 44 potato proteins and one viral protein (P1) specifically associated with virus isolated from infected phloem. An additional 142 proteins interact in complex with virus at varying degrees of confidence. Greater than 80% of these proteins were previously found to form high confidence interactions with PLRV isolated from the model host Nicotiana benthamiana. Bioinformatics revealed that these proteins are enriched for functions related to plasmodesmata, organelle membrane transport, translation and mRNA processing. Our results show that model system proteomics experiments are extremely valuable for understanding protein interactions regulating infection in recalcitrant pathogens such as phloem-limited viruses.