Project description:The ability of honey bees to evaluate differences in food type and value is crucial for colony success, but these assessments are made by individuals who bring food to the hive, eating little, if any, of it themselves. We tested the hypothesis that responses to food type (pollen or nectar) and value involve different subsets of brain regions, and genes responsive to food. mRNA in situ hybridization of c‐jun revealed that brain regions responsive to differences in food type were mostly different from regions responsive to differences in food value, except those dorsal and lateral to the mushroom body calyces, which responded to all three. Transcriptomic profiles of the mushroom bodies generated by RNA sequencing gave the following results: (1) responses to differences in food type or value included a subset of molecular pathways involved in the response to food reward; (2) genes responsive to food reward, food type and food value were enriched for (the Gene Ontology categories) mitochondrial and endoplasmic reticulum activity; (3) genes responsive to only food and food type were enriched for regulation of transcription and translation; and (4) genes responsive to only food and food value were enriched for regulation of neuronal signaling. These results reveal how activities necessary for colony survival are channeled through the reward system of individual honey bees.
Project description:The white button mushroom Agaricus bisporus is the most widely produced edible fungus with a great economical value. Its commercial cultivation process is often performed on wheat straw and animal manure based compost that mainly contains lignocellulosic material as a source of carbon and nutrients for the mushroom production. As a large portion of compost carbohydrates are left unused in the current mushroom cultivation process, the aim of this work was to study wild-type A. bisporus strains for their potential to convert the components that are poorly utilized by the commercial strain A15. Growth profiling suggested different abilities for several A. bisporus strains to use plant biomass derived polysaccharides, as well as to transport and metabolize the corresponding monomeric sugars. Six wild-type isolates with diverse growth profiles were compared for mushroom production to A15 strain in semi-commercial cultivation conditions. Transcriptome and proteome analyses of the three most interesting wild-type strains and A15 indicated that the unrelated A. bisporus strains degrade and convert plant biomass polymers in a highly similar manner. This was also supported by the chemical content of the compost during the mushroom production process. Our study therefore reveals a highly conserved physiology for unrelated strains of this species during growth in compost.
2018-05-22 | GSE99928 | GEO
Project description:Combating antimicrobial resistance in the Norwegian food production chain, NextSeq dataset
| PRJEB40941 | ENA
Project description:Combating antimicrobial resistance in the Norwegian food production chain, HiseqX dataset
| PRJEB40952 | ENA
Project description:Combating antimicrobial resistance in the Norwegian food production chain, Hiseq2500 dataset