Project description:In many plant species, flower stigma secretions are important in early stages of sexual reproduction. Previous chemical analysis and proteomic characterization of these exudates provided insights into their biological function. Nevertheless, the presence of nucleic acids in the stigma exudates has not been previously reported. Here we studied the stigma exudates of Pyrus communis, Pyrus pyrifolia and Pyrus syriaca, and showed them to harbor extracellular RNAs of various sizes. RNA sequencing revealed, for the first time, the presence of known Rosaceae mature micro-RNAs (miRs), also abundant in the stigma source tissue. Predicted targets of the exudate miRs in the Arabidopsis thaliana genome include genes involved in various biological processes. Several of these genes are pollen transcribed, suggesting possible involvement of exudate miRs in transcriptional regulation of the pollen. Moreover, extracellular miRs can potentially act across kingdoms and target genes of stigma interacting organisms/microorganisms, thus opening novel applicative avenues in HortSciences.
Project description:Microarray experiments were used to build a profile of candidate stigma genes that facilitate early pollination events. Of over 24,000 genes probed, we identified 11,403 genes expressed in stigma tissue, 317 of these that are stigma specific (not expressed in control tissues). To appear in Sexual Plant Reproduction, Swanson, Clark, and Preuss, "Expression Profiling of Arabidopsis Stigma Tissue Identifies Stigma-Specific Genes." Experiment Overall Design: Expression profiles of stigma, ovary and seedling tissues were studied and contrasted. Four samples each of seedling and ovary were used; and three stigma samples.
Project description:In many plant species, flower stigma secretions are important in early stages of sexual reproduction. Previous chemical analysis and proteomic characterization of these exudates provided insights into their biological function. Nevertheless, the presence of nucleic acids in the stigma exudates has not been previously reported. Here, we studied the stigma exudates of Pyrus communis, Pyrus pyrifolia, and Pyrus syriaca and showed them to harbor extracellular RNAs of various sizes. RNA sequencing revealed, for the first time, the presence of known Rosaceae mature microRNAs (miRs), also abundant in the stigma source tissue. Predicted targets of the exudate miRs in the Arabidopsis thaliana genome include genes involved in various biological processes. Several of these genes are pollen transcribed, suggesting possible involvement of exudate miRs in transcriptional regulation of the pollen. Moreover, extracellular miRs can potentially act across kingdoms and target genes of stigma interacting organisms/microorganisms, thus opening novel applicative avenues in Horticulture.
Project description:In angiosperms, stigma provides initial nutrients and guidance cues for pollen grain germination and tube growth. However, little is known about genes that regulate these processes in rice. Here we generate rice stigma-specific gene expression profiles through comparing genome-wide expression patterns of hand dissected unpollinated stigma at anthesis with seven tissues including seedling shoot, seedling root, mature anther, ovary at anthesis, seeds of five days after pollination, 10-day-old embryo, 10-day-old endosperm as well as suspension cultured cells by using 57K Affymetrix rice whole genome array. In total, we identified 665 probe sets (550 genes) to be expressed specifically or predominantly in the stigma papillar cells of rice. Real-Time quantitative RT-PCR analysis of 34 selected genes confirmed their stigma-specific expression. The expression of five selected genes was further validated by RNA in situ hybridization. Gene annotation shows that several auxin-signaling components, transporters and stress-related genes are significantly overrepresented in the rice stigma gene set. We also found that genes involved in cell wall metabolism and cellular communication appear to be conserved in the stigma between rice and Arabidopsis. Our results indicate that the stigmas appear to have conserved and novel molecular functions between rice and Arabidopsis. Keywords: rice (Oryza sativa L.), pollination and fertilization, stigma, molecular functions, signaling£¬microarray, stress response
Project description:In angiosperms, stigma provides initial nutrients and guidance cues for pollen grain germination and tube growth. However, little is known about genes that regulate these processes in rice. Here we generate rice stigma-specific gene expression profiles through comparing genome-wide expression patterns of hand dissected unpollinated stigma at anthesis with seven tissues including seedling shoot, seedling root, mature anther, ovary at anthesis, seeds of five days after pollination, 10-day-old embryo, 10-day-old endosperm as well as suspension cultured cells by using 57K Affymetrix rice whole genome array. In total, we identified 665 probe sets (550 genes) to be expressed specifically or predominantly in the stigma papillar cells of rice. Real-Time quantitative RT-PCR analysis of 34 selected genes confirmed their stigma-specific expression. The expression of five selected genes was further validated by RNA in situ hybridization. Gene annotation shows that several auxin-signaling components, transporters and stress-related genes are significantly overrepresented in the rice stigma gene set. We also found that genes involved in cell wall metabolism and cellular communication appear to be conserved in the stigma between rice and Arabidopsis. Our results indicate that the stigmas appear to have conserved and novel molecular functions between rice and Arabidopsis. Experiment Overall Design: We generate rice stigma-specific gene expression profiles through comparing genome-wide expression patterns of hand dissected unpollinated stigma at anthesis with seven tissues including seedling shoot, seedling root, mature anther, ovary at anthesis, seeds of five days after pollination, 10-day-old embryo, 10-day-old endosperm as well as suspension cultured cells by using 57K Affymetrix rice whole genome array.
Project description:In our previous work, we found that the root exudates of sgn3 myb36 promoted the colonization of CHA0 on roots. Through LC-MS, we identified a large amount of glutamine (Gln) in the root exudates of sgn3 myb36. Therefore, we aim to use RNA-seq to uncover whether the root exudates of sgn3 myb36 and Gln have the same regulatory effects on CHA0. By conducting differential analysis with the CK (CHA0 treated with wild-type root exudates), we hope to identify the specific regulatory mechanisms of sgn3 myb36 and Gln on CHA0.
Project description:n Arabidopsis thaliana, the non-pollinated floral stigma degenerates about 3 to 4 days after flower opening. This data set describes the changes in the stigma transcriptome profiles during this senescence process. Three timepoints cover the young (TP1), the mature (TP2), and the senescent (TP3) stigma.
Project description:Root exudates play an important role in plant-microbe interaction. The transcriptional profilings of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to maize root exudates under static condition, were investigated by an Illumina RNA-seq for understanding the regulatory roles of the root exudates.
Project description:Purpose: The recent publication of the fungal mutualist R. irregularis genome facilitated transcriptomic studies. We here adress the gene regulation of R. irregularis in response to root exudates from rice wild-type and osnope1 (no perception candidate - mutant unable to host arbuscular mycorrhizal fungi) Methods: Spores of R. irregularis were treated with root exudates and collected at 1 hour, 24 hours and 7 days after addition. To monitor fungal gene regulation, control conditions were also prepared at T0, 1h, 24h and 7d. mRNA were sequenced by HiSeq Illumina. Reads were mapped on the Rhizophagus irregularis genome assembly (Gloin1 - Tisserant et al., PNAS, 2013) using CLCworkbench suite. Results: -At 1h, a set of 92 fungal genes were found up-regulated in response to wt root exudates (92), not to osnope1 root exudates, many of them being involved in cell signaling. -At 24h and 7d, numerous genes putatively involved in primary metabolism were up-regulated in response to wt root exudates, not in response to osnope1 root exudates -Several vital genes involved in cell development are repressed in response to osnope1 RE compared to wt RE. Conclusions: these results argue for a high metabolic activity induced by wt root exudates, not by osnope1 root exudates.
Project description:Successful pollination brings together the mature pollen grain and stigma papilla to initiate an intricate series of molecular processes meant to eventually enable sperm cell delivery for fertilization and reproduction. At maturity, the pollen and stigma cells have acquired proteomes comprising the primary molecular effectors required upon their meeting. In Brassica species, knowledge of the roles and global composition of these proteomes is largely lacking. To address this gap, gel-free shotgun proteomics was performed on the mature pollen and stigma of Brassica carinata, a representative of the Brassica family and its many crop species (e.g. B. napus, B. oleracea, B. rapa), which holds considerable potential as a bio-industrial crop. 5608 and 7703 B. carinata mature pollen and stigma proteins were identified, respectively. The pollen and stigma proteomes were found to reflect not only their many common functional and developmental objectives, but also important differences underlying their cellular specialization. Isobaric tag for relative and absolute quantification (iTRAQ) was exploited in the first analysis of a developing Brassicaceae stigma, and uncovered 251 B. carinata proteins that were differentially abundant during stigma maturation, providing insight into proteins involved in the initial phases of pollination.