Project description:The norovirus VPg protein is covalently linked to the viral genome in place of a 5' cap, and functions as a cap-substitute, capable of interacting with translation initiation factors. Following on from our previous study (Chung et. al. 2014, J. BIol. Chem.) we wished to determine the interactome of human norovirus VPg, and compare that of murine norovirus VPg. We had previously demonstrated that mutation of the penultimate C-terminal phenylalanine residue in murine norovirus VPg greatly reduced initiation factor binding (F123A). Insertion of the equivalent mutation into human norovirus (F137A) also reduced initiation factor binding. Affinity purification of wild-type of mutant human and murine norovirus VPg was accomplished using GFP-tagged VPg transfected into SILAC-labelled human HEK-293T cells.
Project description:Chlorine is a widely used industrial chemical that is also considered a chemical threat agent. Inhalation of chlorine gas can cause acute injury to the respiratory tract, including the death of airway epithelial cells. Failure to efficiently repair the epithelial damage is associated with long-term respiratory abnormalities, including airway fibrosis. We previously developed a model of airway injury in which mice exposed to chlorine gas exhibit epithelial damage and develop fibrosis in large airways. In the present study, we measured gene expression in developing fibrotic lesions isolated from chlorine-exposed mice 4 days after exposure and compared to expression in corresponding areas from unexposed mice. Mesenchymal tissue was isolated by laser-capture microdissection to limit the analysis to the developing fibrotic lesions. The 4-day time point was chosen in an attempt to identify early profibrotic signaling events because at this time fibroblast proliferation has commenced but the fibrotic scar has not yet formed.
Project description:Murine norovirus is genetically similar to human norovirus, and offers both an efficient in vitro cell culture system and animal model by which to investigate the molecular basis of replication. Here, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a norovirus infection. This was accomplished for both RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine norovirus replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared to RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW264.7 cells, transcriptional upregulation and INF-ß expression were not coupled, in that a significant delay in the detection of secreted INF-ß was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-ß that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid synthesis pathways in RAW264.7 cells compared to that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive cell culture system to the study of norovirus immunity, pathogenesis, and drug development.
Project description:We report the transcriptomic changes in Salmonella Typhimurium exposed to sub-lethal sonophotocatalytic disinfection. The current data suggests that more than 120 genes are significantly expressed during the process. The genes associated with the flagellar assembly were found to be significantly up-regulated during the disinfection, which may have impacts on the phenotypic attributes of the bacteria.
Project description:Ozone has been proposed for water disinfection because it is more efficient than chlorine for killing microbes and results in much lower levels of carcinogenic trihalomethanes than does chlorination. Ozone leads to formation of hypobromous acid in surface waters with high bromine content and forms brominated organic by-products and bromate. The carcinogenicity and chronic toxicity of potassium bromate (KBrO3) [CAS:7758-02-3;CHEBI:32030] was studied in male B6C3F1 mice and F344/N rats to confirm and extend the results of previous work. Mice were treated with 0, 0.08, 0.4, or 0.8 g/L KBrO3 in the drinking water for up to 100 wk, and rats were provided with 0, 0.02, 0.1, 0.2, or 0.4 g/L KBrO3. Animals were euthanatized, necropsied, and subjected to a complete macroscopic examination. Selected tissues and gross lesions were processed by routine methods for light microscopic examination. The present study showed that KBrO3 is carcinogenic in the rat kidney, thyroid, and mesothelium and is a renal carcinogen in the male mouse, KBrO3 was carcinogenic in rodents at water concentrations as low as 0.02 g/L (20 ppm; 1.5 mg/kg/day). These data can be used to estimate the human health risk that would be associated with changing from chlorination to ozonation for disinfection of drinking water.
2006-11-14 | E-TOXM-21 | biostudies-arrayexpress
Project description:Disinfection effects of chlorine and hydrogen peroxide on airborne bacteria
Project description:With this study we wanted to evaluate the impact of murine norovirus infection of germfree mice and to compare it to germfree mice which have received fecal transplants of conventional mice.
Project description:mRNA profiles of 8 weeks old C57BL/6 mice 2 days after infections with 5e7 pfu of various strains of murine norovirus (MNV) or 1e8 pfu of T1L reovirus were evauated