Project description:Bacillus licheniformis-fermented products (BLFP) are probiotics with antibacterial, antiviral, and anti-inflammatory properties that can improve growth performance. This study aimed to, firstly, compare the fecal microbiota of cats with chronic diarrhea (n = 8) with that of healthy cats (n = 4) from the same household using next-generation sequencing and, secondly, evaluate the effectiveness of oral administration of BLFP in relieving clinical signs and altering the intestinal microbiota in diarrheal cats. Six out of eight cats with diarrhea showed clinical improvement after BLFP administration for 7 days, and in two cats the stool condition was normal. A higher Firmicutes/Bacteroidetes ratio was noted in the feces of diarrheal cats without clinical improvement as compared with those in the healthy control group and in the diarrheal cats with clinical improvement after receiving BLFP. The phylum Bacteroidetes and class Bacteroidia decreased significantly in diarrheal cats regardless of BLFP administration. Blautia spp., Ruminococcus torques, and Ruminococcus gnavus, which belong to the Clostridium cluster XIVa and have been reported as beneficial to intestinal health, increased significantly in feces after BLFP treatment. Furthermore, a significant decrease in Clostridium perfringens was noted in diarrheal cats after BLFP administration. Overall, BLFP could be a potential probiotic to relieve gastrointestinal symptoms and improve fecal microbiota in cats with chronic diarrhea.
Project description:The purpose of this study was the identification of RNAs contained in the urinary exosome (UExo) from dogs and cats. The quality of total RNA in isolated urinary exosome (UExo)-derived total RNAs obtained from the column-based method (urine 1 mL) was checked by using a Bioanalyzer, and samples from normal renal function (NR) group and kidney disease (KD) group were pooled as one sample for each group. We collected NR dogs (n = 37), KD dogs (n = 47), NR cats (n=43), and KD cats (n = 45). For the next generation sequencing, libraries were prepared according to the manufacturer’s protocols and sequenced using 50-base reads acquired by using a HiSeq 2000 platform. The December 2011 (GRCm38/mm10) mouse (Mus musculus) genome data were used as reference. As a result, we could identify the miRNA from these samples.
Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:BACKGROUND: Meticillin-resistant Staphylococcus aureus (MRSA) infections remain important medical and veterinary challenges. The MRSA isolated from dogs and cats typically belong to dominant hospital-associated clones, in the UK mostly EMRSA-15 (CC22 SCCmecIV), suggesting original human-to-animal transmission. Nevertheless, little is known about host-specific genetic variation within the same S. aureus lineage. HYPOTHESIS/OBJECTIVES: To identify host-specific variation amongst MRSA CC22 SCCmecIV by comparing isolates from pets with those from in-contact humans using whole-genome microarray. METHODS: Six pairs of MRSA CC22 SCCmecIV from human carriers (owners and veterinary staff) and their respective infected in-contact pets were compared using a 62-strain whole-genome S. aureus microarray (SAM-62). The presence of putative host-specific genes was subsequently determined in a larger number of human (n = 47) and pet isolates (n = 93) by PCR screening. RESULTS: Variation in mobile genetic elements (MGEs) occurred frequently and appeared largE: The variation found amongst MGEs highlights that genetic adaptation in MRSA continues. However, host-specific MGEs were not detected, which supports the hypothesis that pets may not be natural hosts of MRSA CC22 and emphasizes that rigorous hygiene measures are critical to prevent contamination and infection of dogs and cats. The host specificity of individual heavy-metal resistance genes warrants further investigation into different selection pressures in humans and animals.
Project description:Background: Ultra-Conserved-Non-coding Elements (UCNEs) are genomic sequences that exhibit >95% sequence identity between human, mammals, birds, reptiles and fishes. Recent findings reported their functional role in cancer. Aim of this study was to evaluate their DNA methylation modifications in squamous cell carcinoma (SCC) from different mammal species Methods: Fifty SCC from 26 humans, 17 cats, 3 dogs, 1 horse, 1 bovine, 1 badger and 1 porcupine were investigated. Fourteen feline stomatitis and normal samples from 36 healthy human donors, 7 cats, 5 dogs, 5 horses, 2 bovines and 1 badger were collected as normal controls. Bisulfite Next Generation Sequencing evaluated the DNA methylation level from seven UCNEs (uc.160, uc.283, uc.416, uc.339, uc.270, uc.299, uc.328). Results: 57/59 CpGs were significantly different according to the Kruskal-Wallis test (P<0.05) comparing normal vs SCC. A common DNA hypermethylation pattern was observed in SCC from all the species evaluated in this study, with an increasing trend of hypermethylation starting from normal mucosa, through stomatitis to SCC. Conclusions: Our findings indicate that UCNEs are hypermethylated in human SCC, and this behavior is also conserved among different species of mammals.