Project description:Triple negative breast cancer is a heterogeneous disease with distinct molecular subtypes that differentially respond to chemotherapy and targeted agents. The purpose of this study was to explore the clinical relevance of Lehmann triple negative breast cancer subtypes by identifying any differences in response to neoadjuvant chemotherapy among them.
Project description:Triple-negative breast cancer (TNBC) patients with residual disease after neoadjuvant chemotherapy generally have worse outcome; however, some patients with residual tumor after neoadjuvant chemotherapy do not relapse. We hypothesize that there are subgroups of chemoresistant TNBC patients with different prognosis. In this study, 25 chemoresistant samples from 47 neoadjuvant chemotherapy-treated TNBC (The Methodist Hospital) are chosen for study
Project description:In the study presented here, a consecutively operated, well-defined cohort of 30 triple-negative breast cancer cases with neoadjuvant chemotherapy, followed up more than five years, was used to acquire TP53 signature composed of a total of 33 genes. Combining the response to NAC and the TP53signature score in triple-negative breast cancer was able to predict an unfavorable prognosis.
Project description:Triple negative breast carcinoma samples were taken prior to chemotherapy in order to identify epigenomic profiles predictive of neoadjuvant chemotherapy efficacy
Project description:Triple-negative breast cancer (TNBC) patients with residual disease after neoadjuvant chemotherapy generally have worse outcome; however, some patients with residual tumor after neoadjuvant chemotherapy do not relapse. We hypothesize that there are subgroups of chemoresistant TNBC patients with different prognosis. In this study, 25 chemoresistant samples from 47 neoadjuvant chemotherapy-treated TNBC (The Methodist Hospital) are chosen for study We used gene expression data of TNBC patients with residual disease and different prognosis to molecularly define the clinically relevant subgroups, and developed a 7-gene prognostic signature for chemoresistant TNBCs
Project description:10 biopsies before treatment from triple negative patients with complete response were collected. Total RNA was extracted from tumor specimens and the whole transcriptome was quantified with Affymetrix HuGene1.1ST. The biopsies were classified into Good (major or complete) or Poor (absent or minor) therapeutic response subgroup. Whole genome expression of triple negative breast cancer tissues were measured before neoadjuvant chemotherapy
Project description:In a cohort study of 7 women with primary invasive breast cancer, we obtained a tumor specimen before (biopsy) and after (tumorectomy) 4 cycles of NAC with epirubicine and cyclophosphamide, followed by 4 cycles of taxanes. Total RNA was extracted from tumor specimens and the whole transcriptome was quantified with Affymetrix HuGene1.1ST. Molecular functions changing during chemotherapy were searched. Whole genome expression of triple negative breast cancer tissues were measured before and after four cycles neoadjuvant chemotherapy
Project description:Twenty-four triple-negative breast cancer and 14 adjacent normal tissues were collected from breast cancer patients during surgeries at National Taiwan University Hospital (NTUH, Taipei, Taiwan). All triple-negative breast cancer samples were invasive ductal carcinomas (IDC) and were negative in immunohistochemical statuses of ER, PR, and HER2 receptors, as confirmed by professional pathologists. Treatment procedure of all patients followed the National Comprehensive Cancer Network (NCCN) guideline. All samples were neoadjuvant-free and were collected before systemic chemotherapy treatments. Written informed consent was obtained from all patients who participated in this study. Using human tissues for research in this study was approved by the institutional review board at NTUH. A novel set of 25-miRNA signature identified in this study was able to effectively distinguish between triple-negative breast cancer and adjacent normal tissues. Moreover, we documented the first evidence of seven polycistronic miRNA clusters preferentially harboring deregulated miRNA genes in triple-negative breast cancer.
Project description:In this study, we analyzed the differential spatial transcriptome of Triple-Negative Breast Cancer (TNBC) patients who responded in an opposite manner to neoadjuvant chemotherapy (NACT): we compared responders displaying pathological complete response (pCR) with no-responders who showed disease progression during therapy. Diagnostic TruCut biopsies were analyzed using the GeoMx Cancer Transcriptome Atlas (Nanostring).
Project description:Immune checkpoint inhibitors combined with chemotherapy represent a promising treatment option in triple-negative breast cancer (TNBC). However, response rates are still relatively low necessitating the design of novel therapeutic strategies to improve clinical outcomes. Here, we describe a triple combination of anti-PDL-1 immune checkpoint blockade, epigenetic modulation thorough BET bromodomain inhibition, and chemotherapy with paclitaxel that effectively inhibits both primary and metastatic tumor growth in two different syngeneic murine breast cancer models. Detailed cellular and molecular profiling of tumors from single and combination treatment arms revealed increased T and B cell infiltration and macrophage reprogramming from M1 to a M2 phenotype in mice treated with triple combination.