Project description:The mRNA transcriptome and m6A methylation microarray profiling of mouse kidney tissues. Kidney tissues from the sham-operated group and unilateral ureteral ligation/obstruction (UUO) kidney tissues were compared. The latter were mainly fibrotic kidney tissues. The goal was to identify the effect of the renal fibrosis on gene expression and corresponding m6A modifications during kidney fibrosis.
Project description:Label-free quantitative proteomics for mouse kidney tissue of UUO vs Sham was used for discovery of differential expressed proteins in the process of renal fibrosis. Compared to sham mice, we found that 216 upregulated proteins and 215 downregulated proteins in UUO mice according to fold change ≥ 5, adjusted-p ≤ 0.01. Then, we will study the potential mechanism according to differential expressed proteins.
Project description:The mRNA transcriptome and m6A methylation microarray profiling of mouse kidney tissues. Kidney tissues from the sham-operated group and unilateral ureteral ligation/obstruction (UUO) kidney tissues were compared. The latter were mainly fibrotic kidney tissues. The goal was to identify the effect of the renal fibrosis on gene expression and corresponding m6A modifications during kidney fibrosis.
Project description:Transcriptional profiling of mouse kidney tissue comparing control untreated mice with mice treated with cisplatin. The latter makes kidney failure. Goal was to identify the alterations of N6-methyladenosine (m6A) RNA profiles in cisplatin-induced acute kidney injury (AKI) in mice.
Project description:Animals were sc dosed with 5mg/kg anti-miR-214 or control anti-miR, had UUO performed and were sacrificed at 7 days. n=4 animals per group, 2 groups
Project description:Treatments for kidney fibrosis represent an urgent yet unmet clinical need. Effective therapies are limited due to not well understood molecular pathogenesis. We aimed at generating a comprehensive and integrated multi-omics data set (RNA/ microRNA transcriptomics and proteomics) of fibrotic kidneys which will be searchable through a user-friendly web application. Therefore, two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid (FA) induced nephropathy) and an irreversible surgical-induced fibrosis model (unilateral ureteral obstruction (UUO)). RNA and small RNA sequencing as well as MS/MS with 10-plex tandem mass tags proteomics were performed with kidney samples from different time points over the course of fibrosis development. In summary, we present temporal and integrated multi-omics data from fibrotic mouse kidneys which are accessible through an interrogation tool to provide a searchable transcriptome and proteome for kidney fibrosis researcher.