Project description:Calponin 2 (CNN2) is a prominent actin stabilizer. It regulates fatty acid oxidation (FAO) by interacting with estrogen receptor 2 (ESR2) to determine kidney fibrosis. However, whether CNN2 is actively involved in acute kidney injury (AKI) remains unclear. Here, we report that CNN2 was induced in human and animal kidneys after AKI. Knockdown of CNN2 preserved kidney functions, mitigated tubular cell death and inflammation, and promoted cell proliferation. Distinct from kidney fibrosis, proteomics showed that the key elements in the FAO pathway have little changes in AKI, but we identified that hydroxymethylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme of endogenous ketogenesis that promotes cell self-renewal, was markedly increased in CNN2 knockdown kidneys. The ketone bodies β-hydroxybutyrate and ATP production were increased in CNN2 knockdown mice. Mechanistically, CNN2 interacts with ESR2 to activate mitochonrial sirtuin 5, subsequently desuccinylating HMGCS2 to produce energy for AKI repair. Understanding CNN2-mediated discrete fine-tuning of protein posttranslational modification is critical to optimize organ performance after AKI.
Project description:The goal of this observational study is to compare anesthetic modalities (intravenous propofol anesthesia with sevoflurane gas anesthesia) in patients who underwent colorectal cancer resection surgery regarding the outcome of acute kidney injury.
The main questions it aims to answer are:
* is there a difference in acute kidney injury incidence in the two anesthetic modalities?
* is there a difference in plasma creatinine between the two anesthetic modalities?
* are there any patient characteristics or intraoperative factors that effect the incidence of acute kidney injury in either anesthetic modality?
The study will analyze data from the CAN clinical trial database. (Cancer and Anesthesia: Survival After Radical Surgery - a Comparison Between Propofol or Sevoflurane Anesthesia, NCT01975064)
Project description:Kidney tissues from a cisplatin-induced acute kidney injury mouse model of global Apobec1 knockout mice compared with wild type mice. 6 months old male mice examined. We used microarrays to identify genes that are differentially expressed during acute kidney injury in the absence of apobec1 compared with wild type mice.
Project description:Fibroblasts are present in every organ. While the role fibroblasts in chronic diseases such as fibrosis or tumor expression has been extensively explored, little is known about their physiological role. The kidney possesses a unique capacity to recover from even severe acute injury. We study molecular mechanisms of this intrinsic repair capacity in the mouse model of ischemia-reperfusion (IR). In this model, the renal artery and vein are clamped for 45 min, leading to acute kidney injury. The kidney spontaneously recovers from such IR injury within 14 days. IR kidney injury is associated with a transient accumulation of fibroblasts in the diseased tissue. We hypothesized that fibroblasts aid the repair of acute IR injury in the kidney. To elucidate how FSP1+ fibroblasts may contribute to the repair of kidney injury, we undertook a global unbiased approach to compare gene expression profiles of fibroblasts isolated from kidneys post-IRI and from control kidneys by FACS sorting. To investigate the role fibroblasts may play in the repair of kidney inhury, we performed ischemia reperfusion injury surgery on transgenic mice in which the FSP-1 promoter drives EGFP expression. Kidney injury peaks at day 3 post-IRI, followed by spontaneous regeration that restores nearly perfect kidney architecture and health by day 10. Fibroblasts are thought to possibly play a role in this process, as they are normally rare in the healthy kidney, acute kidney injury is associated with a transient accumulation of interstitial fibroblasts, but whether they may help repair the acute kidney injury or in fact could contribute to the damage is not known. To compare the gene expression profiles of normal fibroblasts and those from post-ischemic kidneys, we sacrificed control FSP1-GFP mice and the FSP1-GFP mice three days post-IRI. We generated single-cell suspensions from both the post-IRI and control kidneys, and then isolated FSP1-GFP+ cells by FACS sorting that, when cultured on plastic, displayed typical fibroblast morphology. Total RNA was immediately extracted from the sorted cells and amplified to produce enough for a array. We biotinylated five of the samples from post-ischemic kidneys and three of the control (non-ischemic) kidneys and used Affymetrix 3' Arrays to examine differences in gene expression profiles between the two groups that may she some light on what role, if any, fibroblasts play in the spontaneous healing of the kidney after acute kidney injury. We performed ischemia reperfusion surgery in FSP1-GFP mice, and at day 3, we sacrificed the mice, isolated FSP1-GFP positive cells from both IR and normal control kidneys by FACS sorting, extracted total RNA from the isolated FSP1-GFP cells and used Affymetrix Mouse Expression Array 430 2.0 microarrays to perform gene expression profiling of the samples. All told, we performed the FACS Sorting, RNA extration, and hybridization with 5 ischemic kidneys and 3 normal kidneys. Fibroblasts, acute kidney injury, repair, comparative gene expression profiling, microarrays, FACS sorting, role in healing
Project description:Microarray analysis of human kidneys with acute kidney injury (AKI) has been limited because such kidneys are seldom biopsied. However, all kidney transplants experience AKI, and early kidney transplants without rejection are an excellent model for human AKI: they are screened to exclude chronic kidney disease, frequently biopsied, and have extensive follow-up. We used histopathology and microarrays to compare indication biopsies from 28 transplants with AKI to 11 pristine protocol biopsies of stable transplants. Kidneys with AKI showed increased expression of 394 injury-repair response associated transcripts, including many known epithelial injury molecules (e.g. ITGB6, LCN2), tissue remodeling molecules (e.g. VCAN), and inflammation molecules (S100A8, ITGB3). Many other genes also predict the phenotype, depending on statistical filtering rules, including AKI biomarkers as HAVCR1 and IL18. Most mouse orthologs of the top injury-repair transcripts were increased in published mouse AKI models. Pathway analysis of the injury-repair transcripts revealed similarities to cancer, development, and cell movement. The injury-repair transcript score AKI kidneys correlated with reduced function, future recovery, brain death, and need for dialysis, but not future graft loss. In contrast, histologic features of "acute tubular injury" did not correlate with function or with the molecular changes. Thus the injury-repair associated transcripts represent a massive coordinate injury-repair response of kidney parenchyma to AKI, similar to mouse AKI models, and provide an objective measure for assessing the severity of AKI in kidney biopsies and validation for the use of many AKI biomarkers. AKI biopsies sample names and CEL files are from GSE21374. All consenting renal transplant patients undergoing biopsies for cause as standard of care between 09/2004 and 10/2007 at the university of Alberta or between 11/2006 and 02/2007 at the University of Illinois were included in the analysis. In addition to the cores required for standard histopathology, we collected one core for gene expression studies. the relationship between gene expression in the biopsy and subsequent graft loss was analyzed. This dataset is part of the TransQST collection.
Project description:miRNA profiling of kidney tissue from C57BL/6 mice that received a 30 minute ischemic injury compared with control kidney tissue from mice that received sham operation only. Two condition experiment - sham and ishemic injury (IRI). Eight time points were measured using pooled samples from three mice.
Project description:Microarray analysis of human kidneys with acute kidney injury (AKI) has been limited because such kidneys are seldom biopsied. However, all kidney transplants experience AKI, and early kidney transplants without rejection are an excellent model for human AKI: they are screened to exclude chronic kidney disease, frequently biopsied, and have extensive follow-up. We used histopathology and microarrays to compare indication biopsies from 28 transplants with AKI to 11 pristine protocol biopsies of stable transplants. Kidneys with AKI showed increased expression of 394 injury-repair response associated transcripts, including many known epithelial injury molecules (e.g. ITGB6, LCN2), tissue remodeling molecules (e.g. VCAN), and inflammation molecules (S100A8, ITGB3). Many other genes also predict the phenotype, depending on statistical filtering rules, including AKI biomarkers as HAVCR1 and IL18. Most mouse orthologs of the top injury-repair transcripts were increased in published mouse AKI models. Pathway analysis of the injury-repair transcripts revealed similarities to cancer, development, and cell movement. The injury-repair transcript score AKI kidneys correlated with reduced function, future recovery, brain death, and need for dialysis, but not future graft loss. In contrast, histologic features of "acute tubular injury" did not correlate with function or with the molecular changes. Thus the injury-repair associated transcripts represent a massive coordinate injury-repair response of kidney parenchyma to AKI, similar to mouse AKI models, and provide an objective measure for assessing the severity of AKI in kidney biopsies and validation for the use of many AKI biomarkers.