Project description:To elucidate the modulatory participation of miRNAs in mollusk biomineralization, we have employed high-throughput sequencing to identify miRNAs of pearl oyster, Pinctada fucata. Our study focused on the miRNA expression profile of the mantle, an organ responsible for shell formation of the oyster. The pearl oysters were cultured in the tank with the maintaining conditions of temperature 19 ℃, PH 8.1 and salinity 33‰ in recirculating seawater.
2021-05-01 | GSE145993 | GEO
Project description:Pacific oyster shell color strain mantle
| PRJNA1110076 | ENA
Project description:cap color formation of oyster mushroom
Project description:Deep sequencing of mRNA from Pacific oyster Crassostrea gigas Competent larvae of Crassostrea gigas were treated with epinephrine solution, and then sampled at different time intervals. For shell damage experiment, shell were broken and then tissues were sampled at different time intervals.
Project description:This SuperSeries is composed of the following subset Series: GSE13980: Analysis of the global gene expression profile for pearl oyster, Pinctada maxima, exposed to organotin (tributyltin) GSE14303: Differential expression analysis of genes from the mantle tissue of pearl oyster: Pinctada maxima GSE14305: The microstructural, mineralogical and transcriptional developments of shell biomineralization of Pinctada maxima Refer to individual Series
Project description:Marigold (Tagetes erecta L.) is an important ornamental plant with a wide variety of colors. Despite its economic value, there are few biochemical and molecular basic studies of flower color in marigold. To study the mechanism behind its color formation, metabolomics analysis and de novo cDNA sequencing was performed on marigold inbred line ‘V-01’ and its petal color mutant ‘V-01M’, in four flower developmental stages.
Project description:This work reports a comprehensive and integrated microstructural, biochemical and proteomics study on the shell matrix of Spondylus gaederopus, the Mediterranean thorny oyster. We investigate the skeletal matrix proteins which are involved in biomineralization and compare the identified Spondylus sequences with other shell proteins, that are publicly available in databases. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated by different bleaching treatments. We identified six shell proteins, which also displayed features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. However, many reconstructed peptide sequences (de novo) could not be matched to any known shell proteins and we suggest that these probably represent lineage-specific sequences. The proteomic data implies that Spondylus may have evolved a distinct molecular toolkit for biomineralization. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated by different bleaching treatments. Six shell proteins were identified, which displayed features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. However, most of the reconstructed peptide sequences (de novo) could not be matched to any known shell proteins and probably represent lineage-specific sequences.
Project description:Mollusk secretes a periostracum layer prior to the underlying calcified shell. This organic membrane serves as the first line of protection and primary template for shell orchestration. However, the chemical composition and formation mechanism of the periostracum layer is largely unknown. In this study, we applied transcriptomic, proteomics, physical and chemical analysis to unravel the mysteries of the periostracum formation in the green mussel Perna viridis (Linnaeus). Scanning electron microscopy examination and FTIR analysis showed that the periostracum layer was a multilayered organic membrane composed of polysaccharides, lipids and proteins. Interestingly, proteomic study identified components enriched in tyrosine and some enzymes evolved in tyrosine oxidation, indicating that tyrosine oxidation might play an important role in the periostracum formation. Moreover, comparative transcriptomics suggested that tyrosine-rich proteins were intensively synthesize in the periostracum groove. After being secreted, the periostracum proteins were gradually tanned by oxidation in the sea water, and the level of crosslink increased significantly as revealed by the ATR-FTIR. Our present study sheds light on the chemical composition and putative tanning mechanism of the periostracum layer in bivalve mollusk.