Project description:We found acetyl-CoA levels increase when cells are committed to growth. We also found 3 components of the SAGA complex, Spt7p, Sgf73p and Ada3p as well as histones are dynamically acetylated in tune with the acetyl-CoA levels. ChIP-seq study reveals SAGA and H3K9ac predominantly occupy growth genes at the OX growth phase of the yeast metabolic cycle indicating acetyl-CoA levels may drive growth gene transcription program through acetylation of these proteins. Examination of H3K9ac and SAGA binding over two timepoints using H3 and Input as controls
Project description:Recent findings regarding NAD+-capped RNAs (NAD-RNAs) indicate that prokaryotes and eukaryotes employ non-canonical RNA capping to regulate genes, a previously unrecognized mechanism. Two methods for transcriptome-wide analysis of NAD-RNAs, NAD captureSeq and NAD tagSeq, are based on copper-catalyzed azide-alkyne cycloaddition click chemistry reaction to label NAD-RNAs. However, copper can fragment RNA, interfering with the analyses. Here we report development of NAD tagSeq II, which uses copper-free, strain-promoted azide-alkyne cycloaddition for labeling NAD-RNAs, followed by identification of tagged RNA by direct RNA sequencing. Using this method, we compared NAD-RNA and total transcript profiles of E. coli cells in the exponential and stationary phases and identified hundreds of NAD-RNA species. For some genes, the majority of their transcripts were found as NAD-RNAs. Our study indicates that NAD-RNAs are preferentially produced from inducible genes in response to different growth conditions.
Project description:The 5’ end of a eukaryotic mRNA generally has a methyl guanosine cap (m7G cap) that not only protects the mRNA from degradation but also mediates almost all other aspects of gene expression. Some RNAs in E. coli, yeast, and mammals were recently found to contain an NAD+ cap at their 5’ ends. Here we report development of a new method – NAD tagSeq – for transcriptome-wide identification and quantification of NAD+-capped RNAs (NAD-RNAs). The method uses first an enzymatic reaction and then a click chemistry reaction to label NAD-RNAs with a synthetic RNA tag. The tagged RNA molecules can be enriched and directly sequenced using the Oxford Nanopore sequencing technology. NAD tagSeq not only allows more accurate identification and quantification of NAD-RNAs but can also reveal sequences of whole NAD-RNA transcripts. Using NAD tagSeq, we found that NAD-RNAs in Arabidopsis are mostly produced from a few thousand protein-coding genes, with over 60% of them from fewer than 200 genes. The top 2,000 genes that were found to produce the highest numbers of NAD-RNAs were enriched in the gene ontology terms of responses to oxidative stress and other stresses, photosynthesis, and protein synthesis. For some Arabidopsis genes, over 10% of their transcripts could be NAD-capped. The NAD-RNAs in Arabidopsis have similar overall sequence structures to their canonical m7G-capped mRNAs. The identification and quantification of NAD-RNAs and revealing their sequence features provide essential steps toward understanding functions of NAD-RNAs.
Project description:Metabolic production of acetyl-CoA has been linked to histone acetylation and gene regulation, however the mechanisms are largely unknown. We show that the metabolic enzyme acetyl-CoA synthetase 2 (ACSS2) is a critical and directchum regulator of histone acetylation in neurons and of long-term mammalian memory. We observe increased nuclear ACSS2 in differentiating neurons in vitro. Genome-wide, ACSS2 binding corresponds with increased histone acetylation and gene expression of key neuronal genes. These data indicate that ACSS2 functions as a chromatin-bound co-activator to increase local concentrations of acetyl-CoA and to locally promote histone acetylation for transcription of neuron-specific genes. Remarkably, in vivo attenuation of hippocampal ACSS2 expression in adult mice impairs long-term spatial memory, a cognitive process reliant on histone acetylation. ACSS2 reduction in hippocampus also leads to a defect in upregulation of key neuronal genes involved in memory. These results reveal a unique connection between cellular metabolism and neural plasticity, and establish a link between generation of acetyl-CoA and neuronal chromatin regulation. Genome-wide examination of histone H3 and H4 acetylation, as well as ACSS2 binding, in undifferentiated CAD cells and differentiated CAD neurons; background adjusted by H3 ChIP or Input.
Project description:Coarctation of the aorta (CoA) accounts for 5-8% of all congenital heart defects. CoA can be detected in up to 20% of patients with Ullrich-Turner syndrome (UTS), in which a part or all of one of the X chromosomes is absent. The etiology of non-syndromic CoA is poorly understood. In the present work, we test the hypothesis that rare copy number variation (CNV) especially on the gonosomes, contribute to the etiology of non-syndromic CoA.
Project description:Coarctation of the aorta (CoA) accounts for 5-8% of all congenital heart defects. CoA can be detected in up to 20% of patients with Ullrich-Turner syndrome (UTS), in which a part or all of one of the X chromosomes is absent. The etiology of non-syndromic CoA is poorly understood. In the present work, we test the hypothesis that rare copy number variation (CNV) especially on the gonosomes, contribute to the etiology of non-syndromic CoA.