Project description:How bacteria from the microbiota modulate the physiology of its host is an important question to address. Previous work revealed that the metabolic status of Arabidopsis thaliana was crucial for the specific recruitment of Streptomycetaceae into the microbiota. Here, the Arabidopsis-Actinacidiphila interaction was further depicted by inoculating axenic Arabidopsis with Actinacidiphila cocklensis DSM 42063 or Actinacidiphila bryophytorum DSM 42138(previously named Streptomyces cocklensis and Streptomyces bryophytorum). We demonstrated that these two bacteria colonize A. thaliana wild-type plants, but their colonization efficiency was reduced in a chs5 mutant with defect in isoprenoid, phenylpropanoids and lipids synthesis. We observed that those bacteria affect the growth of the chs5 mutant but not of the wild-type plants. Using a mass spectrometry-based proteomic approach, we showed a modulation of the Arabidopsis proteome and in particular its components involved in photosynthesis or phytohormone homeostasis or perception by A. cocklensis and A. bryophytorum. This study unveils specific aspects of the Actinacidiphila-Arabidopsis interaction, which implies molecular processes impaired in the chs5 mutant and otherwise at play in the wild-type. More generally, this study highlights complex and distinct molecular interactions between Arabidopsis thaliana and bacteria belonging to the Actinacidiphila genus.
Project description:Transcriptional profiling after inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells Perturbations in the cellulose content of the plant cell wall lead to global modifications in cellular homeostasis, as seen in cellulose synthase mutants or after inhibiting cellulose synthesis. In particular, application of inhibitors of cellulose synthesis such as thaxtomin A (TA) and isoxaben (IXB) initiates a programmed cell death (PCD) in Arabidopsis thaliana suspension cells that is dependent on de novo gene transcription. To further understand how TA and IXB activate PCD, a whole genome microarray analysis was performed on mRNA isolated from Arabidopsis suspension cells exposed to TA and IXB. More than 75% of the genes upregulated by TA were also upregulated by IXB, including genes encoding cell wall-related and calcium-binding proteins, defence/stress-related transcription factors, signalling components and cell death-related proteins. Comparisons with published transcriptional analyses revealed an important subset of genes generally induced in response to various biotic and abiotic stress.
Project description:Thaxtomin A is a phytotoxin produced by Streptomyces scabies and other Streptomyces species, the causative agents of common scab disease in potato and other taproot crops. At nanomolar concentrations, thaxtomin causes dramatic cell swelling, reduced seedling growth, and inhibition of cellulose synthesis in Arabidopsis. We identified a mutant of Arabidopsis, designated txr1, that exhibits increased resistance to thaxtomin as a result of a decrease in the rate of toxin uptake. The TXR1 gene was identified by map-based cloning and found to encode a novel, small protein with no apparent motifs or organelle-targeting signals. The protein, which has homologs in all fully sequenced eukaryotic genomes, is expressed in all tissues and during all developmental stages analyzed. Microarray transcript profiling of some 14,300 genes revealed two stomatin-like genes that were expressed differentially in the txr1 mutant and the wild type. We propose that TXR1 is a regulator of a transport mechanism A genetic modification design type is where an organism(s) has had genetic material removed, rearranged, mutagenized or added, such as knock out. Keywords: genetic_modification_design
Project description:Thaxtomin A is a phytotoxin produced by Streptomyces scabies and other Streptomyces species, the causative agents of common scab disease in potato and other taproot crops. At nanomolar concentrations, thaxtomin causes dramatic cell swelling, reduced seedling growth, and inhibition of cellulose synthesis in Arabidopsis. We identified a mutant of Arabidopsis, designated txr1, that exhibits increased resistance to thaxtomin as a result of a decrease in the rate of toxin uptake. The TXR1 gene was identified by map-based cloning and found to encode a novel, small protein with no apparent motifs or organelle-targeting signals. The protein, which has homologs in all fully sequenced eukaryotic genomes, is expressed in all tissues and during all developmental stages analyzed. Microarray transcript profiling of some 14,300 genes revealed two stomatin-like genes that were expressed differentially in the txr1 mutant and the wild type. We propose that TXR1 is a regulator of a transport mechanism
Project description:Comparison of wild type and bir6 mutant Arabidopsis thaliana seedlings. The bir6 mutant is resistant to root growth inhibition by buthione sulfoxime, an inhibitor of glutathione biosynthesis.
Project description:Thaxtomin A is a phytotoxin produced by Streptomyces scabies and other Streptomyces species, the causative agents of common scab disease in potato and other taproot crops. At nanomolar concentrations, thaxtomin causes dramatic cell swelling, reduced seedling growth, and inhibition of cellulose synthesis in Arabidopsis. We identified a mutant of Arabidopsis, designated txr1, that exhibits increased resistance to thaxtomin as a result of a decrease in the rate of toxin uptake. The TXR1 gene was identified by map-based cloning and found to encode a novel, small protein with no apparent motifs or organelle-targeting signals. The protein, which has homologs in all fully sequenced eukaryotic genomes, is expressed in all tissues and during all developmental stages analyzed. Microarray transcript profiling of some 14,300 genes revealed two stomatin-like genes that were expressed differentially in the txr1 mutant and the wild type. We propose that TXR1 is a regulator of a transport mechanism A genetic modification design type is where an organism(s) has had genetic material removed, rearranged, mutagenized or added, such as knock out. Computed
Project description:Transcriptional profiling after inhibition of cellulose synthesis by thaxtomin A and isoxaben in Arabidopsis thaliana suspension cells; Perturbations in the cellulose content of the plant cell wall lead to global modifications in cellular homeostasis, as seen in cellulose synthase mutants or after inhibiting cellulose synthesis. In particular, application of inhibitors of cellulose synthesis such as thaxtomin A (TA) and isoxaben (IXB) initiates a programmed cell death (PCD) in Arabidopsis thaliana suspension cells that is dependent on de novo gene transcription. To further understand how TA and IXB activate PCD, a whole genome microarray analysis was performed on mRNA isolated from Arabidopsis suspension cells exposed to TA and IXB. More than 75% of the genes upregulated by TA were also upregulated by IXB, including genes encoding cell wall-related and calcium-binding proteins, defence/stress-related transcription factors, signalling components and cell death-related proteins. Comparisons with published transcriptional analyses revealed an important subset of genes generally induced in response to various biotic and abiotic stress. Experiment Overall Design: TA, IXB and methanol (control) were added to Arabidopsis thaliana suspension cells three days after sub-culture. Cells were harvested for RNA isolation and frozen in liquid nitrogen after 6 hours of contact with the inhibitors. Samples consisted of four replicates for each condition. A total of 12 Affymetrix GeneChips® were used in this study, which correspond to 12 RNA samples from the four biological replicates for each of the TA, IXB or methanol addition.
Project description:Background: Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimationadaptation. The CW constitutes the first physical barrier as well as a primary source of sugars for plant microbes, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. Results: Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. Previous studies showed an induction of ectopic lignification, accumulation of defense-related phytohormones, and dwarfism in primary CW cellulose synthesis deficient plants, potentially explaining their resistance to Fo5176. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. AbolishingThis ethylene signaling interruption attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. Conclusions: Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.
Project description:Background: Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimationadaptation. The CW constitutes the first physical barrier as well as a primary source of sugars for plant microbes, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. Results: Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. Previous studies showed an induction of ectopic lignification, accumulation of defense-related phytohormones, and dwarfism in primary CW cellulose synthesis deficient plants, potentially explaining their resistance to Fo5176. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. AbolishingThis ethylene signaling interruption attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. Conclusions: Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.