Project description:With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive Western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while remaining unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population were observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa. Three lines of Alfalfa (salt-tolerant CW064027, salt-tolerant Bridgeview, salt-sensitive Rangelander) were grown on 3 different concentrations of salt. For each cultivar-salt condition, 3 biological replicates were collected for a total of 27 samples.
Project description:Abstract: In order to understand the expression patterns of miRNAs in alfalfa under alkali stress, small RNA sequencing was performed on alfalfa roots at different time points under alkali stress, and miRNAs were identified and analyzed.
Project description:Alfalfa (Medicago sativa L.) is a forage legume with significant agricultural value worldwide. MicroRNAs (miRNAs) are key components of post-transcriptional gene regulation and essentially control almost all aspect of plant growth and development. Although miRNAs have been reported from alfalfa but their expression profiles in different tissues and novel miRNAs as well as their targets have not been confirmed in this plant species. Therefore, we sequenced small RNAs in whole plantlets, shoots and roots of three different alfalfa genotypes (Altet-4, NECS-141 and NF08ALF06) to identify tissue-specific profiles. After comprehensive analysis using bioinformatics methods, we have identified 100 miRNA families, of which 21 belongs to the highly conserved families whereas the remaining 79 families are conserved between M. truncatula and M. sativa. The profiles of the six highly expressed conserved miRNA families (miR156, 159, 166, 319, 396, 398,) were relatively similar between the plantlets, roots and shoots of three genotypes. Contrastingly, the differenecs were robust between shoots and roots for miR160 and miR408 levels, which were low in roots compared to shoots. The study also has identified 17 novel miRNAs that also differed in their abundanecs between tissues of the alfalfa genotypes. Additionally, we have generated and analyzed the degradome libraries from three alfalfa genotypes that has confirmed 69 genes as targets for 31 miRNA families in alfalfa. The identification of conserved and novel miRNAs as well as their targets in different tissues of three genotypes not only enhanced our understanding of miRNA-mediated gene regulation in alfalfa but could also be useful for practical applications in alfalfa as well as related legume species.
2019-01-15 | GSE119460 | GEO
Project description:Alfalfa silage community diversity
Project description:We studied the application of transcriptome technology in alfalfa selenium (Se) treatment. Alfalfa had different states after different concentrations of Se treatment. It shows that lower concentration promoted growth and higher concentration produced toxicity. The positive regulatory effects of moderate Se (100 mg / kg) on alfalfa was determined through preliminary experiments, and the gene expression of Alfalfa under this treatment was further analyzed by transcriptome.