Project description:Hydrostatic pressure is one of the physical factors affecting cellular physiology. Hydrostatic pressure of a few hundred MPa decreases the viability of yeast cells, and pressure of a few tens MPa decreases the growth rate. To understand the effect of hydrostatic pressure, we employed yeast, Saccharomyces cerevisiae, DNA microarrays and analyzed genome-wide mRNA expression profiles under hydrostatic pressures. In this experiment, we selected a hydrostatic pressure of 30 MPa at 25 degrees C because yeast cells are able to grow with this condition. Keywords: stress response
Project description:Hydrostatic pressure is one of the main mechanical stimuli cartilage cells are submitted to during joint loading. If moderate hydrostatic pressure is known to be beneficial to cartilage differentiation, excessive pressure, on the other hand, induces changes in cartilage similar to those observed in osteoarthritic cartilage. Therefore, the purpose of the experiment is to identify new target genes of high hydrostatic pressure in chondrocyte precursor cells.
Project description:Hydrostatic pressure is one of the physical factors affecting cellular physiology. Hydrostatic pressure of a few hundred MPa decreases the viability of yeast cells, and pressure of a few tens MPa decreases the growth rate. To understand the effect of hydrostatic pressure, we employed yeast, Saccharomyces cerevisiae, DNA microarrays and analyzed genome-wide mRNA expression profiles under hydrostatic pressures. In this experiment, we selected a hydrostatic pressure of 40 MPa at 25 degrees C because the condition is not lethal for yeast cells but the growth was suppressed. Keywords: stress response
Project description:This SuperSeries is composed of the following subset Series: GSE28410: Mouse oocytes: High hydrostatic pressure (HP) treated vs. Control GSE28411: Mouse in vitro fertilized four-cell stage embryos: High hydrostatic pressure (HP) treated vs. Control Refer to individual Series
Project description:Series containes 4 independent experiments and high and low power scanns for each independent experiment. Genome-wide mRNA expression profiles of Saccharomyces cerevisiae growing under hydrostatic pressure were characterized. We selected a hydrostatic pressure of 30 MPa at 25°C because yeast cells were able to grow under these conditions, while cell size and complexity were increased after decompression. Functional characterization of pressure-induced genes suggests that genes involved in protein metabolism and membrane metabolism were induced. The response to 30 MPa was significantly different from that observed under lethal conditions because protein degradation was not activated under 30 MPa pressure. Strongly induced genes included those that contribute to membrane metabolism and which are also induced by detergents, oils, and membrane stabilizers.
Project description:Chondrocytes are subject to continuous loads placed upon them throughout development and physical activity. Normal physiological loads enable the maintenance of the articular cartilage health, however abnormal loads contribute to pathological joint ageing. Similarly, the growth plate cartilage is exposed to a number of loads during growth and development. Due to the high-water content of cartilage, hydrostatic pressure is considered one of the main biomechanical influences on chondrocytes and it plays an important role in the mechanoregulation of cartilage. Therefore in this study we conducted RNA-seq analysis of ex vivo hip cap (articular) and metatarsal (growth) cartilage cultures after physiological and injurious hydrostatic pressure. Gene expression in response to 5mPa (physiological) or 50mPa (injurious) hydrostatic pressure was quantified by transcriptome analysis using the Illumina platform
Project description:We have identified differentially expressed genes according to hydrostatic pressure growth conditions in Desulfovibrio hydrothermalis. The transcriptomic datasets report the molecular mechanisms which could be involved in such adaptation and give information for the piezophile sulfate-reducing bacteria research communities. The data obtained pointed out a gradual response of D. hydrothermalis to an increase of hydrostatic pressure, with a threshold above 10 MPa and the involvement of a quite limited number of genes and/or pathways involved in the adaptation to hydrostatic pressure.
Project description:Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae: Hydrostatic pressure is one of the physical factors affecting cellular physiology. Hydrostatic pressure of a few hundred MPa decreases the viability of yeast cells, and pressure of a few tens MPa decreases the growth rate. To understand the effect of hydrostatic pressure, we employed yeast DNA microarrays and analyzed genome-wide gene-expression levels after the pressure treatment with 180 MPa (immediate) at 4 degrees C and recovery incubation for 1 h and 40 MPa (16 h) at 4 degrees C and recovery incubation for 1 h. The transcription of genes involved in energy metabolism, cell defense, and protein metabolism was significantly induced by the pressure treatment. Genome-wide expression profiles suggested that high pressure caused damage to cellular organelles, since the induced gene products were localized in the membrane structure and/or cellular organelles. Hierarchical clustering analysis suggested that the damage caused by the pressure was similar to that caused by detergents, oils, and freezing/thawing. We also estimated the contribution of induced genes to barotolerance using some strains that have the deletion in the corresponding genes. Keywords: stress response
Project description:Series containes 4 independent experiments and high and low power scanns for each independent experiment. Genome-wide mRNA expression profiles of Saccharomyces cerevisiae growing under hydrostatic pressure were characterized. We selected a hydrostatic pressure of 30 MPa at 25°C because yeast cells were able to grow under these conditions, while cell size and complexity were increased after decompression. Functional characterization of pressure-induced genes suggests that genes involved in protein metabolism and membrane metabolism were induced. The response to 30 MPa was significantly different from that observed under lethal conditions because protein degradation was not activated under 30 MPa pressure. Strongly induced genes included those that contribute to membrane metabolism and which are also induced by detergents, oils, and membrane stabilizers. Keywords: repeat sample