Project description:Background. The bacterial foodborne pathogen Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the postinfectious neuropathies, Guillain-Barré and Miller Fisher syndromes. This study described the use of multilocus sequence typing and DNA microarrays to examine the genetic content of a collection of South African C. jejuni strains, recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. Methodology/Principal Findings. The comparative genomic analysis by using multilocus sequence typing and DNA microarrays demonstrated that the South African strains with Penner heat-stable (HS) serotype HS:41 were clearly distinct from the other South African strains. Further analysis of the DNA microarray data demonstrated that the serotype HS:41 strains from South African GBS and enteritis patients are highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to serotype HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements. Only the genomic integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas absent in the closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both genomic integrated elements CJIE1 and CJIE2. Conclusion/Significance. These findings demonstrated that these C. jejuni integrated elements may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may probably contribute to increasing the genomic diversity of these C. jejuni strains. This comparative genomic analysis of the foodborne pathogen C. jejuni provides fundamental information that potentially could lead to improved methods for analyzing the epidemiology of disease outbreaks and their sources. Keywords: comparative genomic indexing analysis
Project description:Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. This study aims at the characterisation of pathomechanisms and signalling in Campylobacter-induced diarrhoea in the human mucosa. During routine colonoscopy, biopsies were taken from patients suffering from campylobacteriosis. RNA-seq of colon biopsies was performed to describe Campylobacter jejuni-mediated effects. Mucosal mRNA profiles of acutely infected patients and healthy controls were generated by deep sequencing using Illumina HiSeq 2500. This data provide the basis for subsequent upstream regulator analysis.
Project description:We asked whether Campylobacter jejuni isolated from patients with Guillain-Barri syndrome (GBS) differ from isolates isolated from patients with uncomplicated gastrointestinal infection using DNA microarray analysis. We found that specific GBS genes or regions were not identified, and microarray analysis confirmed significant genomic heterogeneity among the isolates. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Keywords: all_pairs
Project description:We asked whether Campylobacter jejuni isolated from patients with Guillain-Barri syndrome (GBS) differ from isolates isolated from patients with uncomplicated gastrointestinal infection using DNA microarray analysis. We found that specific GBS genes or regions were not identified, and microarray analysis confirmed significant genomic heterogeneity among the isolates. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Computed
Project description:We asked whether Campylobacter jejuni isolated from patients with Guillain-Barri syndrome (GBS) differ from isolates isolated from patients with uncomplicated gastrointestinal infection using DNA microarray analysis. We found that specific GBS genes or regions were not identified, and microarray analysis confirmed significant genomic heterogeneity among the isolates.
Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep aborion isolates of C. jejuni was investigated by Array-based CGH
Project description:Campylobacter jejuni has become the predominant cause of sheep abortions in the U.S. However, little is know about the genetic diversity among the isolates collected from different time periods. In this study, the genetic diversity of sheep abortion isolates of C. jejuni was investigated by Array-based CGH
Project description:Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduces the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals were still colonized (non-responders). To understand the underlying mechanism, we conducted 3 larger scale vaccination and challenge studies using 135 broiler birds and found a similar responder/non responder effect. The submitted data were used for a genome-wide association study of the chicken responses to glycoconjugate vaccination against Campylobacter jejuni.