Project description:Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functional evolution. For instance, we show that TERF1 evolved as a telomere-binding protein in the common stem lineage of marsupial and placental mammals. Phylointeractomics is a versatile and scalable approach to investigate evolutionary changes in protein function and thus can provide experimental evidence for phylogenomic relationships.
2017-02-15 | PXD005517 | Pride
Project description:MYRIAPODA PHYLOGENOMICS AND EVOLUTION
Project description:Two genetic selection systems that couple metabolite hydroxylation or methylation of small molecules to growth of Escherichia coli are presented in this study. One system targets pterin-dependent hydroxylation (tBPt) while another focuses on S-adenosylmethionine-dependent methylation (SAM). Using adaptive laboratory evolution with growth selection, these two systems are demonstrated to not only achieve in vivo directed evolution of enzymes involved in human hormone biosynthesis but also reveal non-intuitive host factors that elude existing synthetic biology approaches. Raw sequencing data for the relevant strains generated in this study are presented here.
Project description:Mice lacking the POU-domain transcription factor Brn3a exhibit marked defects in sensory axon growth and abnormal sensory apoptosis. We have determined the regulatory targets of Brn3a in the developing trigeminal ganglion using microarray analysis of Brn3a mutant mice. These results show that Brn3 mediates the coordinated expression of neurotransmitter systems, ion channels, structural components of axons and inter- and intracellular signaling systems. Loss of Brn3a also results in the ectopic expression of transcription factors normally detected in earlier developmental stages and in other areas of the nervous system. Target gene expression is normal in heterozygous mice, consistent with prior work showing that autoregulation by Brn3a results in gene dosage compensation. Detailed examination of the expression of several of these downstream genes reveals that the regulatory role of Brn3a in the trigeminal ganglion appears to be conserved in more posterior sensory ganglia but not in the CNS neurons that express this factor. Experiment Overall Design: Microarrays used to compare the patterns of gene expression in the trigeminal ganglia of Brn3a knockout and wild-type mice. Embryonic day 13.5 (E13.5) was chosen because at this point in development mutant mice exhibit major defects in sensory axon growth, but have yet to undergo the period of extensive sensory neuron death associated with later stages.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:The Zygnematophyceae are the closest algal relatives of land plants and hence interesting to understand land plant evolution. Species of the genus Serritaenia have an aerophytic lifestyle and form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation. Under laboratory conditions the production of this “sunscreen mucilage” can be induced by ultraviolet B radiation. The present dataset reveals insights into the cellular reaction of this alga to UV radiation (a major stressor in terrestrial habitats) and allows for comparisons with other algae and land plants to draw evolutionary conclusions.
Project description:We performed single-cell chromatin conformation capture with our recently developed method, Dip-C, on mouse sensory neurons in visual and olfactory systems, and reconstructed their 3D genomes.