Project description:We define the promotoreome sequence and epigenetic architecture in barley embryos to both put it into evolutionary perspective and to serve as a reference for agricultural and research biotechnology in cereals.
Project description:We define the promotoreome sequence and epigenetic architecture in barley embryos to both put it into evolutionary perspective and to serve as a reference for agricultural and research biotechnology in cereals.
Project description:Estrogen Receptor alpha (ERα) is a key driver of most breast cancers, and it is the target of endocrine therapies used in the clinic to treat women with ERα positive (ER+) breast cancer. The two methods ChIP-seq (chromatin immunoprecipitation coupled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins) have greatly improved our understanding of ERα function during breast cancer progression and in response to anti-estrogens. A critical component of both ChIP-seq and RIME protocols is the antibody that is used to pull down the bait protein. To date, most of the ChIP-seq and RIME experiments for the study of ERα have been performed using the sc-543 antibody from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby severely impacting the study of ERα in normal physiology as well as diseases such as breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other commercially available antibodies, and we show that 06-935 (EMD Millipore) and ab3575 (Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME experiments.
Project description:To provide comprehensive spatiotemporal information about biological processes in developing grains of cultivated barley (Hordeum vulgare subsp. vulgare), we performed a chromatin immunoprecipitation of H3K27me3 followed by high-throughput sequencing (ChIP-seq) in barley endosperm at 16 days after pollination.
Project description:Plant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley grain maturation, desiccation and germination in two tissue fractions (endosperm/aleurone = e/a and embryo = em) using the Affymetrix barley1 chip. Keywords: time course
Project description:To provide comprehensive spatiotemporal information about biological processes in developing grains of cultivated barley (Hordeum vulgare subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from 4 to 32 days after pollination.