Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig
Project description:Large White and Meishan pigs were either non-treated or injected with mammalian 1-24 ACTH (Immediate Synachten, Novartis France) at the dose of 250 µg per animal. Pigs were sacrificed either immediately after capture from their home cage (non-treated animals) or 1 hour following ACTH injection. Adrenal glands were immediately collected from pigs and frozen on dry ice and then stored at -80°C until RNA isolation. Keywords: stress response, adrenal, gene expression, pig 47 samples
Project description:To obtain an overview of the transcriptome landscape in developing pig skeletal muscle, 81 high-quality transcriptome libraries that covered 27 developmental stages (3 biological replicates per stage) in pig skeletal muscle were produced by strand-specific rRNA-depleted total RNA sequencing (RNA-seq). We generated 8.59 billion paired-end reads (150 bp × 2) covering 1.24 Tb of sequence for RNA-seq.
Project description:African swine fever (ASF) is the most dangerous disease of pigs and causes enormous economic losses in the global pig industry. However, the mechanism of ASF virus (ASFV) infection is unclear. Hence, we wanted to understand the host response mechanism upon ASFV infection. We analyzed the differentially expressed proteins (DEPs) between ASFV-infected and un-infected serum samples using quantitative proteomics. Setting the p-value < 0.05 and |log2 (fold change)| > 1.5, we identified 173 DEPs, including 57 upregulated and 116 downregulated proteins, which belonged to various biological processes and pathways according to the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. The enriched pathways include the immune system, metabolism, and inflammation.