Project description:Enterococcus faecalis is often co-isolated with Pseudomonas aeruginosa in mixed-species biofilm-associated infections of wounds and the urinary tract. As a defence strategy, the host innately restricts iron availability at infection sites. Despite their co-prevalence, the polymicrobial interactions of these two pathogens in low iron conditions, such as those found in the host, remains unexplored. Here we show that E. faecalis inhibits P. aeruginosa growth within macrocolony biofilms when iron is restricted. E. faecalis lactate dehydrogenase (ldh1) gives rise to L-lactate production during fermentative growth. We find that E. faecalis ldh1 mutant fails to inhibit P. aeruginosa growth. Additionally, we demonstrate that ldh1 expression is induced when iron is restricted, resulting in increased lactic acid exported and consequently, a reduction in pH. Together, our results suggest that E. faecalis synergistically impact P. aeruginosa growth negatively by decreasing environmental pH and L-lactate-mediated iron chelation. Overall, this study highlights that the microenvironment in which the infection occurs is important for understanding its pathophysiology.
Project description:The enterococci comprise a genus of 49 low-GC content Gram-positive commensal species within the Firmicutes phylum that are known to occupy diverse habitats, notably the gastrointestinal core microbiota of nearly every phylum, including human. Of particular clinical relevance are two rogue species of enterococci, Enterococcus faecalis and the distantly related Enterococcus faecium, standing among the nefarious multi-drug resistant and hospital-acquired pathogens. Despite increasing evidence for RNA-based regulation in the enterococci, including regulation of virulence factors, their transcriptome structure and arsenal of regulatory small sRNAs (sRNAs) are not thoroughly understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptomes of E. faecalis V583 and E. faecium AUS0004. We identified 2517 and 2771 transcription start sites (TSS) in E. faecalis and E. faecium, respectively. Based on the identified TSS, we created a global map of s70 promoter motifs. We also revealed features of 5’ and 3’UTRs across the genomes. The transcriptome maps also predicted 150 and 128 sRNA candidates in E. faecalis and E. faecium, respectively, some of which have been identified in previous studies and many of which are new. Finally, we validated several of the predicted sRNAs by Northern Blot in biologically relevant conditions. Comprehensive TSS mapping of two representative strains will provide a valuable resource for the continued development of RNA biology in the Enterococci.
Project description:Analysis of changes in gene expression in Enterococcus faecalis OG1 delta-EF2638 mutant compared to wild-type OG1 strain. The deletion mutant has a growth defect when grown with aeration The mutant presented in this study is described and characterized in Vesic, D. and Kristich, C.J. 2012. A Rex-family transcriptional repressor influnces H2O2 accumulation by Enterococcus faecalis. (submitted for publication) Microarray analysis was done using RNA isolated from two independent cultures of wild-type Enterococcus faecalis OG1 and two independent cultres of Enterococcus faecalis OG1 delta-EF2638 mutant; each RNA sample was subjected to triplicate hybridization (technical replicates) . Microarrays were custom designed to investigate expression of ORFs in Enterococcus faecalis OG1RF genome. The arrays were designed based on the OG1RF annotation generated with the Rapid Annotation Using Subsystem Technology (RAST) server (Aziz et. al. 2008. BMC Genomics 9:75), as described in Frank et al (2012) Infect. Immun. 80:539. The aim was eighteen probe pairs per ORF, each of which is present in triplicate.
Project description:Analysis of changes in gene expression in Enterococcus faecalis OG1 delta-EF2638 mutant compared to wild-type OG1 strain. The deletion mutant has a growth defect when grown with aeration The mutant presented in this study is described and characterized in Vesic, D. and Kristich, C.J. 2012. A Rex-family transcriptional repressor influnces H2O2 accumulation by Enterococcus faecalis. (submitted for publication)
Project description:Enterococcus (E.) faecalis is a commensal in healthy humans, frequently found in a variety of fermented foods, and can serve as a probiotic. However, it has also been recognized as a pathogen causing diseases such as endocarditis, bacteremia and urinary tract infections. As known virulence factors are not limited to clinical isolates but widespread in many strains, additional fitness determinants should influence E. faecalis behavior in the host. We have performed a transcriptomic in vivo study with E. faecalis in the intestine of living mice to identify novel latent and adaptive fitness determinants within E. faecalis. The transcriptomic data derived from E. faecalis strain OG1RF monoassociated with wild type mice provide a first insight in the genes used to live as a commensal in the intestinal tract. Clear changes are observed as compared to growth under laboratory conditions (BHI broth) in the expression of genes involved in energy metabolism (e.g. dhaK and glpK pathway), transport and binding mechanisms (e.g. phosphoenolpyruvate carbohydrate PTS) as well as fatty acid metabolism (fab genes). This knowledge can be used to help explain its persistence in this environment, which is a prerequisite to cause infection in a compromised or inflamed host and possibly develop improved treatment strategies of the so far hard to cure infections.
Project description:To investigate the transcriptional changes that Enterococcus faecalis undergoes during agar surface-penetration, which promote cell envelope remodeling and tolerance to stress.
Project description:To further investigate the homeostatic response of E. faecalis to Fe exposure, we examine the whole-genome transcriptional response of wild-type (WT) exposed to non toxic Fe excess. This experiment correspond the work titled Transcriptomic response of Enterococcus faecalis to iron excess (work in preparation) A four chip study using total RNA recovered from four separate wild-type cultures of Enterococcus faecalis OG1RF, two controls samples (N medium growth) and two iron samples (N medium gowth with 0.5 mM Fe-NTA). Each chip measures the expression level of 3,114 genome genes from Enterococcus faecalis strain V583 (A7980-00-01).