Project description:When using YPM media, the carotenoid yield was increased 10-fold compared to using the YPD media. To elucidate the hidden mechanism, the transcriptome analysis was performed and showed that 464 genes changed significantly in YPM media. Furthermore, inspired by the differential gene expression analysis which indicated that ADY2, HES1, and CUP1 showed the most remarkable changes, we found that the improvement of carotenoid accumulation in YPM media was mainly due to the copper, since supplementation of 80 µM CuSO4 in YPD media could increase carotenoid yield 9.2-fold
Project description:We used RNA-Seq to measure transcript abundance in 15 Saccharomyces cerevisiae strains from a diverse range of genetic lineages when growing in rich media (YPD) to characterize differential expression across strains.
Project description:Extensive transcriptional heterogeneity revealed by isoform profiling Application of TIF-Seq (Transcript IsoForm Sequencing) to S.cerevisiae. The method was applied to simultaneously identify the 5' capped mRNA transcription start site and the 3' polyadenylation site in different conditions: WT cells grown in glucose media [ypd, 2 biological replicates (bio) and 3 independent library preparations, technical replicates(lib)], WT cells grown in galactose media [ypgal, 4 biological replicates (bio) and 3 independent library preparations, technical replicates(lib)]. A modified protocol designed to enrich in long mRNA molecules was performed for WT cells grown in glucose media [ypd, 2 biological replicates (bio)] and in galactose media [ypgal, 2 biological replicates (bio)] conditions. Finally, control samples performed with a modified protocol designed to identify non-capped but polyadenylated molecules was performed in WT cells grown both in glucose (nypd) and galactose (nypgal) media.
Project description:Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 signaling pathway inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprogramming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Although rapamycin showed a much more subtle effect on global translation than did caffeine, rapamycin was more effective in prolonging chronological lifespan. Rapamycin prolonged the lifespan of non-growing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond.
Project description:To understand the gene expression in Saccharomyces cerevisiae under fermentative and respiraotry conditions, we perfomred the genome-wide gene expression profiling for the log-phase cells of S. cerevisiae wild type, sef1 deletion, and hyperactive SEF1-VP16 mutants under the YPD and YPGly conditions.
Project description:A caffeine-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation at gradually increasing caffeine levels. The mutant strain Caf905-2 was selected at a caffeine concentration where its reference strain could not grow at all. Whole-genome transcriptomic analysis of Caf905-2 was performed with respect to its reference strain.
Project description:To comparatively analyze the transcriptional responses of yeast cells to the presence of rapamycin or caffeine the homozygous hoΔ/hoΔ strain of S. cerevisiae BY4743 were grown in fully controlled fermenters in the presence of 200 nM rapamycin or 5 mM caffeine. Cells were cultured overnight in YPD medium (2% [w/v] D-glucose, 2% [w/v] peptone, 1% [w/v] yeast extract) at 30°C in an orbital shaker at 180 rpm prior to the fermentations. For the cultivations in the fermenters defined synthetic medium was used. The batch cultivations were carried out in duplicates in 2L B-Braun Biostat B Plus fermenters with 1.5L working volume kept at 30°C with the rate of agitation at 800rpm. pH was controlled at 5.5 with 0.5M NaOH and HCl. Sampling was carried out at the mid-exponential phase of growth at an OD range of 0.6-0.8. Samples harvested for the transcriptome analysis were immediately frozen in liquid nitrogen and were stored at -80oC until RNA isolation.
Project description:Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the phosphatidylinositol 3-kinase (PI3K) related kinase family that contain a C- terminal PI3K domain followed by a ~ 35-residue FATC domain. We have characterized four alleles with single residue changes in the FATC domain. Of these tra1-L3733A had the most pronounced effects with phenotypes including temperature and cold sensitivity, and reduced growth in media containing ethanol, Calcofluor white, rapamycin, chloramphenicol and geneticin. Tra1-L3733A interacted at normal levels with components of the NuA4 and SAGA complexes, and did not significantly alter histone acetylation patterns. The tra1-L3733A allele resulted in two-fold or greater change in expression of approximately 11% of yeast genes in rich media. Of the 279 genes with increased expression, 175 were ribosomal subunits or involved in ribosomal function or biogenesis. Elevated levels of Pol I and Pol III transcripts were also observed. The phenotypes of the tra1-L3733A overlapped with but were not identical to strains containing deletions of SAGA or NuA4 components or with strains containing mutations in the PI3K domain. Our finding that the double mutant allele, tra1-SRR3413/L3733A with alterations in the PI3K and FATC domains, resulted in wild type growth, suggests a model whereby the FATC domain negatively regulates the activity of the PI3K domain. Expression of genes involved in ribosome biosynthesis, other than the ribosomal subunits themselves, returned to near normal levels in the double mutant strain. We also characterized tra1-G3745, which contains an additional glycine residue following the normal C-terminal phenylalanine. This allele did not support viability and showed severe dominant negative effects. In contrast to what was observed for tra1-L3733A, tra1-G4745 resulted in decreased expression of genes required for ribosome biogenesis and did not interact with Esa1 or Spt7.