Project description:We sequenced three small-RNA (sRNA) libraries constructed from leaves of sorghum subjected to three different treatments, well-watered (CK), mild drought (DR1) and severe drought (DR2). These findings will be useful for research on drought resistance and provide insights into the mechanisms of drought adaptation and resistance in sorghum.
Project description:The present study is expected to reveal regulatory network of small RNAs under drought in Sorghum (Sorghum bicolor (L.) Moench). Sorghum genotype drought tolerant (DT) and drought susceptible (DS) were grown at 28-32 degrees C day/night temperature with 12/12 h light/dark period in the phytotron glass house. The fully opened uppermost leaves from control and drought stressed seedlings were sampled and stored at -80 degrees C, and used for generation of a small RNA library. Total RNA was isolated from the leaves using the TRIzol reagent (Invitrogen, USA). Small RNA sequencing libraries were prepared using Illumina Truseq small RNA Library preparation kit following manufacturer's protocol and these libraries were sequenced on GAIIx platform (Illumina Inc., USA). Small RNA reads contaminated with poor-quality and adaptor sequences were trimmed by using the UEA sRNA workbench 2.4- Plant version sequence file pre-processing (http://srna-tools.cmp.uea.ac.uk/). Then, all unique reads were submitted to the UEA sRNA toolkit-Plant version miRCat pipeline (http://srna-tools.cmp.uea.ac.uk/) to predict novel miRNAs from high-throughput small RNA sequencing data.
Project description:To identify novel miRNA and NAT-siRNAs that are associated with abiotic stresses in sorghum, we generated small RNA sequences from sorghum seedlings that grew under control and under dought, salt, and cold stress treatments. sequencing of small RNAs in sorghum under control, drought, salt, and cold stress conditions.
Project description:Sorghum is an important crop often subjected to simultaneous high temperatures and drought in the field. We examined the gene expression response to heat and drought stress both individually, and in combination, with the aim of identifying important stress tolerance mechanisms.
Project description:The present study used Label-Free LC-MS/MS quantification approach to investigate changes in the proteomic profiles of two contrasting sorghum genotypes subjected to drought, heat and combined drought and heat stress. The interpretation of the data generated through this study could improve our understanding of sorghum molecular adaptations to these stresses.
Project description:Sorghum is an important crop often subjected to simultaneous high temperatures and drought in the field. We examined the gene expression response to heat and drought stress both individually, and in combination, with the aim of identifying important stress tolerance mechanisms. Plants were subjected to 4 different conditions (control, heat shock, drought stress and combined heat and drought stress). 3 replicates were carried out for each treatment type giving a total of 12 samples
Project description:Pearl millet [Pennisetum glaucum (L.) R.Br] is the fifth most important cereal crop next to rice, wheat, maize, and sorghum. It is cultivated especially by small holder farmers in arid and semi-arid regions because of its drought resistance. However, the molecular mechanisms during drought stress in Pennisetum remain elusive. In the present study we have used a shotgun proteomics approach (GEL-LC-Orbitrap-MS) for identification and quantification of proteins from different tissues (root, seed and leaf) under drought and control conditions. Plants were grown in a tube system to survey root growth under drought stress. The water content was measured in the upper and the lower part of the tube using soil moisture sensors. Under drought stress root elongation was observed. Measurement of stomatal conductance showed a clear response to drought stress. For proteomics measurements root, leaf and seed tissues were harvested. In total 2281 proteins were identified, 1095 in root, 1299 in seed, and 1208 in leaf in both stress and control conditions.
Project description:We analyzed lncRNAs from sorghum leaves under water control treatment using high-throughput sequencing technology and bioinformatic approaches to explore the genome-wide quantity of lncRNAs and their potential function in the regulation of drought responses.