Project description:Nonalcoholic steatohepatitis (NASH) might soon become the leading cause of end-stage liver disease worldwide with limited treatment options. Liver fibrosis, driven by chronic inflammation and hepatic stellate cells (HSCs) activation, critically determines morbidity and mortality in patients with NASH. Pyruvate kinase M2 (PKM2) is involved in immune activation and inflammatory liver diseases; however, its role and therapeutic potential in NASH fibrosis remain largely unexplored. By bioinformatic screening and analysis of human and murine NASH livers, we found that PKM2 was specifically upregulated in non-parenchymal cells (NPCs) in fibrotic NASH livers, especially in macrophages. Macrophage-specific Pkm2 knockout (Pkm2fl/flLysMCre) significantly ameliorated hepatic inflammation and fibrosis severity in three distinct NASH models induced by methionine–choline-deficient (MCD) diet, high-fat high-cholesterol (HFHC) diet and western diet plus weekly carbon tetrachloride injection (WD/CCl4). Single-cell transcriptomic analysis indicated that deletion of PKM2 in macrophage reduced profibrotic Ly6Chigh macrophage infiltration. Mechanistically, PKM2-dependent glycolysis promotes NLRP3 activation in proinflammatory macrophages, thus inducing HSCs activation and fibrogenesis. Pharmacological PKM2 agonist efficiently attenuated the profibrotic crosstalk between macrophages and HSCs in vitro and in vivo. Translationally, ablation of PKM2 in NPCs by cholesterol-conjugated heteroduplex oligonucleotides, a novel oligonucleotide drug that preferentially accumulated in the liver, dose-dependently reversed NASH fibrosis without observable hepatotoxicity. Our study highlights the pivotal role of macrophage PKM2 in advancing NASH fibrogenesis. Therapeutic modulation of PKM2 in a macrophage-specific or liver-specific fashion may serve as a novel strategy to combat NASH fibrosis.
Project description:Non-alcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that can progress from simple fatty liver disease to non-alcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism and excretion (ADME) of drugs. Differential gene expression between three clinically defined pathological groups; normal, steatosis and NASH was analyzed. The samples were diagnosed as normal, steatotic, NASH with fatty liver (NASH fatty) and NASH without fatty liver (NASH NF). Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChipM-. Human 1.0ST arrays
Project description:The mammalian liver comprises heterogeneous cell types within its tissue microenvironment that respond to physiological cues and undergo pathophysiological reprogramming in disease states, such as nonalcoholic steatohepatitis (NASH). Patients with NASH are at increased risk for the development of hepatocellular carcinoma (HCC). However, the molecular and cellular nature of liver microenvironment remodeling that links NASH to liver carcinogenesis remains obscure. Here we show that diet-induced NASH is characterized by induction of tumor-associated macrophage (TAM)-like macrophages and exhaustion of cytotoxic T cells in mouse liver. The adipose-derived endocrine factor Neuregulin 4 (NRG4) serves as a hormonal checkpoint that restrains this pathological reprogramming during NASH. NRG4 deficiency exacerbates the induction of tumor-prone liver immune microenvironment and NASH-associated HCC, whereas transgenic NRG4 overexpression elicits protective effects in mice. In a therapeutic setting, recombinant NRG4 protein exhibits remarkable efficacy in inhibiting HCC in mice with NASH, thereby paving the way for future therapeutic development.
Project description:The mechanisms underlying the progression of non-alcoholic steatohepatitis (NASH) are not completely elucidated. In this study we have integrated gene expression profiling of liver biopsies of NASH patients with translational studies in a mouse model of steatohepatitis and with pharmacological interventions in isolated hepatocytes to identify a novel mechanism implicated in the pathogenesis of NASH. By using high-density oligonucleotide microarray analysis we identified a significant enrichment of known genes involved in the multi-step catalysis of long chain polyunsaturated fatty acids, including delta-5 and 6 desaturases. A combined inhibitor of delta-5 and delta-6 desaturases significantly reduced intracellular lipid accumulation and inflammatory gene expression in isolated hepatocytes. Gas chromatography analysis revealed impaired delta-5 desaturase activity toward the omega-3 pathway in livers from mice with high-fat diet (HFD)-induced NASH. Consistently, restoration of omega-3 index in transgenic fat-1 mice expressing an omega-3 desaturase, which allows the endogenous conversion of omega-6 into omega-3 fatty acids, produced a significant reduction in hepatic insulin resistance, hepatic steatosis, macrophage infiltration and necroinflammatory liver injury, accompanied by attenuated expression of genes involved in inflammation, fatty acid uptake and lipogenesis. These results were comparable to those obtained in a group of mice receiving a HFD supplemented with EPA/DHA. Of interest, hepatocytes from fat-1 mice or supplemented with EPA exhibited synergistic anti-steatotic and anti-inflammatory actions with the delta-5/ delta-6 inhibitor. Conclusion: These findings indicate that both endogenous and exogenous restoration of the hepatic balance between omega-6 and omega-3 fatty acids and/or modulation of desaturase activities exert preventive actions in NASH. The complete database comprised the expression measurements of 18185 genes for liver sample groups: 8 non-alcoholic steatohepatitis (NASH ) and 7 control samples. This dataset is part of the TransQST collection.