Project description:Monoubiquitination of histone H2B on lysine 123 (H2BK123ub) is a transient histone modification considered to be essential for establishing H3K4 and H3K79 trimethylation by Set1/COMPASS and Dot1, respectively. Many of the factors such as Rad6/Bre1, the Paf1 complex, and the Bur1/Bur2 complex were identified to be required for proper histone H3K4 and H3K79 trimethylation, and were shown to function by regulating H2BK123ub levels. Here, we have identified Chd1 as a factor that is required for proper maintenance of H2B monoubiquitination levels, but not for H3K4 and H3K79 trimethylation. Loss of Chd1 results in a substantial loss of H2BK123ub levels with little to no effect on the genome-wide pattern of H3K4 and H3K79 trimethylation. Our data shows that nucleosomal occupancy is reduced in gene bodies in both CHD1 null and K123A backgrounds. We have also demonstrated that Chd1’s function in maintaining H2BK123ub levels is conserved from yeast to human. Our study provides evidence that only small levels of H2BK123ub are necessary for full levels of H3K4 and H3K79 trimethylation in vivo, and points to a role for Chd1 in positively regulating gene expression through promoting nucleosome re-assembly coupled with H2B monoubiquitination. Examination of two histone modifications in wild-type and Chd1 null yeast strains using ChIP-seq. Expression profiling in wild-type and Chd1 null yeast strains using RNA-seq.
Project description:The stimulation of trimethylation of histone H3 lysine 4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied with multiple mechanisms proposed for this form of histone crosstalk. Cps35/Swd2 within COMPASS is considered to bridge these processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation without interacting with Cps35/Swd2, and such crosstalk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we use biochemical, structural, in vivo, and ChIP-seq approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the crosstalk. Furthermore, the apparent wild-type levels of H3K4 trimethylation (H3K4me3) in the 762-Set1 strain is due to rogue methylase activity of this mutant resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to gene bodies and intergenic regions. We have also performed detailed screens and identified yeast strains lacking H2Bub, but containing intact H2Bub enzymes, that have normal levels of H3K4me3, suggesting that ubiquitination may not directly stimulate COMPASS, but rather works in a context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the ubiquitination machinery and Cps35/Swd2 function to focus COMPASS’ H3K4me3 activity at promoter-proximal regions in a context dependent manner. ChIP-Seq for H3K4ME3 in S. cerevisie wild-type strains and strains expressing a truncated form of Set1: aa762-1080 Set1. H3K4ME3 ChIP-Seq was also compared for wild-type, leo1 knockout, and chd1 knockout strains
Project description:We used chromatin immunoprecipitation-coupled to deep sequencing (ChIP-seq) to profile genome-wide locations of H3K4 trimethylation (H3K4me3) and H3K9 trimethylation (H3K9me3) epigenetic marks in SUN-depleted mouse peritoneal macrophages.
Project description:Genome-wide occupancy of PPARbeta/delta in human myofibroblast (WPMY-1 celline) was studied with ChIP-Seq. Additionally, H3K4 trimethylation and RNA polymerase II status was examined.
Project description:WDR5 is an important co-factor for N-Myc-regulated transcriptional activation and tumorigenesis Using ChIP-Seq, We profiled key epigenetic marks H3K4 trimethylation in BE(2)-C neuroblastoma cells transfected with control siRNA or WDR5 siRNA-1 at N-Myc target gene promoters The results showed knockdown WDR5 significantly reduced H3K4me3 at 93.2% of N-Myc binding promoters, but only at 53.5% of N-Myc non-binding promoters. Identification of Histone H3K4 trimethylation and N-Myc binding sites in BE(2)-C cells transfected with control siRNA or WDR5 siRNA-1.
Project description:The stimulation of trimethylation of histone H3 lysine 4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied with multiple mechanisms proposed for this form of histone crosstalk. Cps35/Swd2 within COMPASS is considered to bridge these processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation without interacting with Cps35/Swd2, and such crosstalk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we use biochemical, structural, in vivo, and ChIP-seq approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the crosstalk. Furthermore, the apparent wild-type levels of H3K4 trimethylation (H3K4me3) in the 762-Set1 strain is due to rogue methylase activity of this mutant resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to gene bodies and intergenic regions. We have also performed detailed screens and identified yeast strains lacking H2Bub, but containing intact H2Bub enzymes, that have normal levels of H3K4me3, suggesting that ubiquitination may not directly stimulate COMPASS, but rather works in a context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the ubiquitination machinery and Cps35/Swd2 function to focus COMPASS’ H3K4me3 activity at promoter-proximal regions in a context dependent manner.