Project description:Chitin soil amendment is known to improve soil quality, plant growth and plant stress resilience, but the underlying mechanisms are not well understood. In this study, we monitored chitin’s effect on lettuce physiology every two weeks through an eight-week growth period, analyzed the early transcriptional reprogramming and related metabolomic changes of lettuce, in response to crab chitin treatment in peat-based potting soil. In commercial growth conditions, chitin amendment still promoted lettuce growth, increased chlorophyll content, the number of leaves and crop head weight from week six. The flavonoid content in lettuce leaves was altered as well, showing an increase at week two but a decrease from week six. Transcriptomic analysis showed that over 300 genes in lettuce root were significant differentially expressed after chitin soil treatment. Gene Ontology-term (GO) enrichment analysis revealed statistical overrepresentation of GO terms linked to photosynthesis, pigment metabolic process and phenylpropanoid metabolic process. Further analysis of the differentially expressed genes (DEGs) showed that the flavonoid pathway is mostly upregulated whereas the bifurcation of upstream phenylpropanoid pathway towards lignin biosynthesis is mostly downregulated. Metabolomic analysis revealed the upregulation of salicylic acid, chlorogenic acid, ferulic acid, and p-coumaric acid in chitin treated lettuce seedlings. These phenolic compounds mainly influence the phenylpropanoid biosynthesis pathway and may play important roles in plant defense reactions. Our results suggest that chitin soil amendments might activate induced resistance by priming lettuce plants and promote lettuce growth via transcriptional changes.
Project description:Antibiotic resistance can arise by several mechanisms, including mutation in transcription factors that regulate drug efflux pumps. In this work, we identified EmrR as a MarR family transcription factor involved in antibiotic resistance in Chromobacterium violaceum, a Gram-negative bacterium that occurs in soil and water and can act as a human opportunistic pathogen. Antibiogram and minimum inhibitory concentration (MIC) assays showed that the ΔemrR mutant presented increased resistance to the antibiotic nalidixic acid in respect to the wild-type strain. The emrR gene is near to a putative operon emrCAB, which encode the efflux pump EmrCAB. DNA Microarray analysis showed that EmrR represses the emrCAB operon and some other putative transporters. Northern blot assays validated that EmrR represses the emrCAB operon and this repression can be released by salicylate, but not other compounds such as nalidixic acid or ethidium bromide. Electrophoretic mobility shift assays (EMSA) showed that EmrR binds directly to the promoter regions of emrR, emrCAB and other genes to exert negative regulation. Therefore, in response to compounds as salicylate, EmrR derepresses the operon emrCAB causing overexpression of the efflux pump EmrCAB and increased resistance to nalidixic acid in C. violaceum.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:In our previous work, we had found that Saccharomyces cerevisiae needs of the Hog1 and Slt2 proteins to growth in a low pH environment caused by sulfuric acid, one of the stress factors during the process of ethanol production. Then was performed the gene-wide expression analysis in the hog1∆ and slt2∆ mutants in order to reveal the function of the Hog1p and Slt2p MAP Kinases in the regulation of S. cerevisiae global gene expression upon stress by sulfuric acid.
Project description:In our previous work, we had found that Saccharomyces cerevisiae needs of the Hog1 and Slt2 proteins to growth in a low pH environment caused by sulfuric acid, one of the stress factors during the process of ethanol production. Then was performed the gene-wide expression analysis in the hog1M-bM-^HM-^F and slt2M-bM-^HM-^F mutants in order to reveal the function of the Hog1p and Slt2p MAP Kinases in the regulation of S. cerevisiae global gene expression upon stress by sulfuric acid. BY4741 strain (Reference) and their derivate mutants hog1M-bM-^HM-^F and slt2M-bM-^HM-^F were grown for 1 h in YPD medium pH 2.5 adjusted with concentrated sulfuric acid