Project description:We carried out the transcriptome analysis to identify the key genes involved in pear fruit semi-russet formation, by comparing the CK (russet) and bagging treated (green) ‘Cuiguan’ pear fruit skin 95 DAFB.
Project description:Comprehensive investigation of gene expression during fruit development and ripening in European pear (Pyrus communis). Gene expression of fruit flesh development of European pear was measured from -7 to 182 days after full bloom (DAFB). 150 DAFB is harvested stage and 182 DAFB is after ripening by chilling treatment (2M-BM-0C 12 days, then 15M-BM-0C 20 days).
Project description:We carried out the transcriptome analysis to identify the key genes involved in pear fruit russet formation by comparing five pear varieties with distinct exocarp characteristics
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:To identify genes associated with citrus peel development and manifestation of peel disorders, we analyzed flavedo, albedo and juice sac tissues from navel orange displaying, and not displaying, the puff disorder. Symptomatic and healthy M-bM-^@M-^\NavelM-bM-^@M-^] orange fruits were harvested from an orchard located in in Pauma Valley, San Diego County, California, USA. Sampling for all analysis (healthy or disordered Navel orange) was performed at the same time, from trees grown under the same agronomic, soil, and environmental conditions. Healthy and disordered fruits were analyzed at the mature stage. All transcriptome analysis was performed on mature fruit. For each type of fruit, three tissues (flavedo, albedo, and juice sacs) from three different trees (biological replicates) were separately analyzed. Four symptomatic fruits comprised one biological replicate each. Two healthy fruits comprised two biological replicates of control samples. A 1 cm-thick equatorial disc and four sections (N, S, E, and W) were cut per fruit. Each section of flavedo, albedo, and juice sac tissue was dissected. gene expression variation underlying quality trait, different genotypes