Project description:The purpose of this study was to explore miRNA mediated Transforming Growth Factor (TGF)-β1 regulation of F508del Cystic Fibrosis Transmembrane Conductance regulator (CFTR). To fulfill this goal, miRNA sequencing was done to see miRNA landscape in Cystic Fibrosis Bronchial Epithelial (CFBE) Cells with homozygous WT-CFTR and F508del mutated CFTR in response to TGFβ1 treatment.
Project description:The purpose of this study was to explore baseline expression of miRNome in Cystic Fibrosis Bronchial Epithelial (CFBE41o-) cells stably transfected with wild type (WT) Cystic Fibrosis Transmembrane Conductance regulator (CFTR) and F508del-CFTR. To fulfill this goal miRNA sequencing was done to see miRNA landscape in CFBE41o- Cells with homozygous F508del mutated CFTR and in CFBE41o- Cells with homozygous WT-CFTR, without any treatment condition.
Project description:In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on Phe508del-CFTR-mediated chloride transport, also restores bicarbonate transport.
Project description:Production of functional proteins requires multiple steps including gene transcription and post-translational processing. MicroRNAs (miRNA) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that microRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with a miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl- permeability independently of elevated mRNA levels. A miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, M-NM-^TF508, causes protein misfolding, degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-M-NM-^TF508 and restored Cl- transport to cystic fibrosis airway epithelia. This novel miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process broader than previously recognized. This discovery also provides new therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation. 12 samples of Calu-3 cells representing different interventions.
Project description:Cystic fibrosis (CF) is a life-shortening genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficit in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, we describe loss of small pulmonary blood vessels in CF patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear stress-dependent mechanism of endothelial barrier failure in CF involving calcium-permeable mechanosensitive channel TRPV4. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another calcium-permeable mechanosensitive channel involved in angiogenesis and wound repair, and further exacerbates loss of small pulmonary blood vessels. We show that CFTR directly interacts with PIEZO1 and enhances its function, and that CFTR deficiency reduces PIEZO1 activity. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.
Project description:Cystic fibrosis, the most commonly inherited lethal pulmonary disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). To identify genomic responses to the presence or absence of CFTR in pulmonary tissues in vivo, microarray analyses of lung mRNAs were performed on whole lung tissue from mice lacking (CFTR(-)) or expressing mouse CFTR (CFTR(+)). Whereas the histology of lungs from CFTR(-) and CFTR(+) mice was indistinguishable, statistically significant increases in the relative abundance of 29 and decreases in 25 RNAs were identified by RNA microarray analysis. Of RNAs whose expression was consistently altered by the absence of CFTR, functional classes of genes influencing gene transcription, inflammation, intracellular trafficking, signal transduction, and ion transport were identified. RNAs encoding the transcription factor CCAAT enhancer-binding protein (CEBP) delta and interleukin (IL) 1beta, both known to regulate CFTR expression, were induced, perhaps indicating adaptation to the lack of CFTR. RNAs mediating lung inflammation including calgranulin-S100 family members, IL-1beta and IL-4, were increased. Likewise, expression of several membrane transport proteins that interact directly with CFTR were increased, suggesting that CFTR-protein complexes initiate genomic responses. Absence of CFTR influenced the expression of genes modulating diverse pulmonary cell functions that may ameliorate or contribute to the pathogenesis of CF. Lungs from sex-matched littermates at 3, 6, and 11 weeks of agewere carefully dissected and the conducting airways and mediastinal structures removed.
Project description:Backtround:Cystic fibrosis (CF) is an inherited genetic disorder caused by the cystic fibrosis transmembrane conductance regulator(CFTR) gene mutation, producing sticky and thick mucosal fluids. This leads to an environment that facilitates the colonization ofopportunistic microorganisms, causing progressive acute and chronic lung infections.Rothia mucilaginosa, an oral commensal, isrelatively abundant in the lungs of CF patients. Recent studies have unveiled the anti-inflammatory effects ofR. mucilaginosausinginvitro3D lung epithelial cell culture andin vivomouse models. Apart from its probiotic effect,R. mucilaginosacan be pathogenic,resulting in severe infections. This dual nature highlights the bacterium’s complexity and diverse impact on health and disease.However, its metabolic capabilities and genotype-phenotype relationships remain largely unknown.Results:To gain insights intoR. mucilaginosa’s cellular metabolism and genetic alterations, we developed the first manually curatedgenome-scale metabolic model,iRM23NL. Through growth kinetic experiments and high-throughput phenotypic microarray testings,we defined its complete catabolic phenome. Subsequently, we assessed the model’s effectiveness in accurately predicting growthbehaviors and utilizing multiple substrates. We used constraint-based modeling techniques to formulate novel hypotheses that couldexpedite the development of antimicrobial strategies. More specifically, we detected putative essential genes and assessed their effecton metabolism under varying nutritional conditions. These predictions could offer novel potential antimicrobial targets without laboriouslarge-scale screening of knock-outs and mutant transposon libraries. Finally, we examined the production levels of enterobactin undervarying nutritional conditions and suggested compounds that could alter its production.Conclusion:Overall,iRM23NL demonstrates a solid capability to predict cellular phenotypes and holds immense potential as avaluable resource for accurate predictions in advancing antimicrobial therapies. Moreover, it can guide the metabolic engineering totailorR. mucilaginosa’s metabolism for desired performance.Availability and implementation:Source code and model are freely accessible from GitHub and BioModels.
Project description:Cystic fibrosis (CF) intestinal disease is characterized by alterations in processes such as proliferation and apoptosis which are known to be regulated in part by microRNA’s. Herein, we completed microRNA expression profiling of the intestinal tissue from the cystic fibrosis mouse model of cystic fibrosis transmembrane conductance regulator (Cftr) deficient mice (BALBc/J Cftrtm1UNC), relative to that of wildtype littermates, to determine whether changes in microRNA expression level are part of this phenotype. We identified 24 microRNA's to be significantly differentially expressed in tissue from CF mice compared to wildtype, with the higher expression in tissue from CF mice. These data were confirmed with real time PCR measurements. A comparison of the list of genes previously reported to have decreased expression in the BALB x C57BL/6J F2 CF intestine to that of genes putatively targeted by the 24 microRNA’s, determined from target prediction software, revealed 20% of the gene expression profile to overlap with predicted targets. Pathway analysis identified these common genes to function in phosphatase and tensin homolog-, protein kinase A-, phosphoinositide-3 kinase/Akt- and peroxisome proliferator-activated receptor alpha/retinoid X receptor alpha signaling pathways, among others, and through real time PCR experiments genes of these pathways were demonstrated to have lower expression in the BALB CF intestine. We conclude that altered microRNA expression is a feature which putatively influences both metabolic abnormalities and the altered tissue homeostasis component of CF intestinal disease. Two condition experiment, Balbc/J Cftrtm1UNC -/- (Cystic Fibrosis (CF) Mice) and Balbc/J Cftrtm1UNC +/+ (Wild Type (WT) Mice). Biological Replicates: 7 WT, 8CF. Ileum Tissue.
Project description:Production of functional proteins requires multiple steps including gene transcription and post-translational processing. MicroRNAs (miRNA) can regulate individual stages of these processes. Despite the importance of the cystic fibrosis transmembrane conductance regulator (CFTR) channel for epithelial anion transport, how its expression is regulated remains uncertain. We discovered that microRNA-138 regulates CFTR expression through its interactions with the transcriptional regulatory protein SIN3A. Treating airway epithelia with a miR-138 mimic increased CFTR mRNA and also enhanced CFTR abundance and transepithelial Cl- permeability independently of elevated mRNA levels. A miR-138 anti-miR had the opposite effects. Importantly, miR-138 altered the expression of many genes encoding proteins that associate with CFTR and may influence its biosynthesis. The most common CFTR mutation, ΔF508, causes protein misfolding, degradation, and cystic fibrosis. Remarkably, manipulating the miR-138 regulatory network also improved biosynthesis of CFTR-ΔF508 and restored Cl- transport to cystic fibrosis airway epithelia. This novel miRNA-regulated network directs gene expression from the chromosome to the cell membrane, indicating that an individual miRNA can control a cellular process broader than previously recognized. This discovery also provides new therapeutic avenues for restoring CFTR function to cells affected by the most common cystic fibrosis mutation.
Project description:The purpose of the study is to compare the transcriptomic profile of the airway epithelium generated from bronchial airway epithelial cells isolated from healthy donors (NCF) and patients with cystic fibrosis (CF). Cells were grown at the air-liquid interface for at least 2-months. CF is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Only patients homozygous for the F508del mutation of the CFTR gene were considered. The reconstituted airway epithelium was mechanically wounded and allowed to repair with time. We considered four steps: 1) intact, non-wounded (NW) epithelium; 2) 24h hours post-wounding (pW); 3) time at which the wound is closed (WC); 4) two days post-wound closure (pWC). We also mimicked infection by exposing the cells to Pseudominas aeruginosa flagelin for NW and WC conditions.