Project description:To investigate the molecular mechanism of tobacco flower in response to the cold treatment, transcriptomic analysis was performed using Agilent Tobacco Gene Expression Microarrays.
Project description:To understand the molecular mechanisms underlying chilling tolerance in rice, transcriptomic deep sequencing was performed to reveal the differentially expressed genes between chilling tolerance chromosome substitution line (CSL), DC90 and its chilling-sensitive recurrent parent 9311 under early chilling stress events. Our results revealed a set of DEGs with higher basal expression in DC90 by comparison with 9311. They were functionally enriched in GO terms, such as, response to stress, response to stimulus, and response to abiotic stimulus, suggesting their positive role in intrinsic chilling tolerance. Common up-regulated and down-regulated DEGs were enriched in 26 and 34 GO terms, including response to stimulus, response to stress, and response to abiotic stimulus, respectively. Furthermore, comparative transcriptomic analysis between DC90 and 9311 in response to early chilling stress revealed 502 DEGs specifically identified in DC90. Most of gene loci were located beyond introgressed regions, implying that the introgression led to reprogramming of transcriptome in response to early chilling stress. CARMO platform analysis of these DEGs presented a complex regulatory network, including phytohormone signaling, photosynthesis pathway, that coordinately involved in chilling tolerance response of DC90. Here, the unveiled molecular regulatory network shed light on deep understanding the mechanisms of rice chilling tolerance. As well, chilling tolerant-QTLs and co-localized DEGs in introgressed fragments, will be focused for further functional investigation of the molecular mechanisms of early chilling stress response in rice.
Project description:Our analysis of the sfr6 freezing-sensitive mutant (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.) and cls8 (unpublished) chilling-sensitive mutant of Arabidopsis, has revealed that the expression of certain cold-regulated genes is aberrant in both these mutants. In order to understand the molecular basis of chilling and freezing stress in Arabidopsis and also to determine commonalities and differences between these 2 different physiological stress-tolerance processes, we request transcriptome analysis for both of these mutants compared to wild type in one experiment, upon cold treatment and at ambient conditions. The sfr6 mutant shows the most severe phenotype with respect to cold gene expression, but is tolerant to chilling (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.). However, it is unable to cold acclimate and hence is sensitive to freezing. The cls8 mutant, on the other hand, has a relatively mild phenotype relative to the cold-regulated genes we have examined, but is very sensitive to chilling temperatures (15 to 10 degree centigrade). It is thus likely that in cls8 we have not yet identified the genes which are most affected, and which account for the physiological phenotype. Both sfr6 and cls8 have been fine-mapped and are close to being cloned. The cls8 mutant has an altered calcium signature in response to cold which means it is likely to be affected in early signalling, e.g. cold perception itself.We will compare the expression profiles of genes in sfr6, cls8 and Columbia (parental line for both mutants), both at ambient, and after treatment with cold (5 degrees) for 3 hours. This timepoint is designed to capture both rapidly responding genes e.g. CBF/DREB1 transcription factors, and also more slow genes e.g. COR genes (KIN1/2 and LTI78). Pilot northerns confirm that this time point is suitable.This analysis will provide new insight into 2 novel genes required for tolerance to low temperature in Arabidopsis, and additionally will determine the nature of overlap between the separate processes of chilling and freezing tolerance. Keywords: strain_or_line_design
Project description:Rice is sensitive to chilling stress, especially at the seedling stage. To elucidate the molecular genetic mechanisms of chilling tolerance in rice, comprehensive gene expressions of two rice genotypes (chilling-tolerant LTH and chilling-sensitive IR29) with contrasting responses to chilling stress were comparatively analyzed. Results revealed distinct global transcription reprogramming between the two rice genotypes under time-series chilling stress and subsequent recovery conditions. A set of genes with higher basal expression were identified in LTH, indicating their possible role in intrinsic tolerance to chilling stress. Under chilling stress, the major effect on gene expression was up-regulation in LTH and strong repression in IR29. Early responses to chilling stress in both genotypes featured commonly up-regulated genes related to transcription regulation and signal transduction, while functional categories for late phase chilling regulated genes were diverse with a wide range of functional adaptations to continuous stress. Following the cessation of chilling treatments, there was quick and efficient reversion of gene expression in LTH, while IR29 displayed considerably slower recovering capacity at the transcriptional level. In addition, the detection of differentially-regulated TF genes and enriched cis-elements demonstrated that multiple regulatory pathways, including CBF and MYBS3 regulons, were involved in chilling stress tolerance. In present study, comprehensive gene expression using an Affymetrix rice genome array revealed a diverse global transcription reprogramming between two rice genotypes under chilling stress and subsequent recovery conditions. The dominant change in gene expression at low temperature was up-regulation in the chilling-tolerant genotype and down-regulation in the chilling-sensitive genotype. Early responses to chilling stress common to both genotypes featured up-regulated genes related to transcription regulation and signal transduction, while functional categories of LR-chilling regulated genes were clearly diverse with a wide range of functional adaptations. At the end of the chilling treatments, there was quick and efficient reversion of gene expression in LTH, while IR29 displayed considerably slower recovery capacity at the transcriptional level. Finally, analysis of differentially-regulated TF genes and enriched cis-elements demonstrated that multiple regulatory pathways, including CBF and MYBS3 regulons, are involved in chilling stress tolerance.
Project description:Our analysis of the sfr6 freezing-sensitive mutant (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.) and cls8 (unpublished) chilling-sensitive mutant of Arabidopsis, has revealed that the expression of certain cold-regulated genes is aberrant in both these mutants. In order to understand the molecular basis of chilling and freezing stress in Arabidopsis and also to determine commonalities and differences between these 2 different physiological stress-tolerance processes, we request transcriptome analysis for both of these mutants compared to wild type in one experiment, upon cold treatment and at ambient conditions. The sfr6 mutant shows the most severe phenotype with respect to cold gene expression, but is tolerant to chilling (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.). However, it is unable to cold acclimate and hence is sensitive to freezing. The cls8 mutant, on the other hand, has a relatively mild phenotype relative to the cold-regulated genes we have examined, but is very sensitive to chilling temperatures (15 to 10 degree centigrade). It is thus likely that in cls8 we have not yet identified the genes which are most affected, and which account for the physiological phenotype. Both sfr6 and cls8 have been fine-mapped and are close to being cloned. The cls8 mutant has an altered calcium signature in response to cold which means it is likely to be affected in early signalling, e.g. cold perception itself.We will compare the expression profiles of genes in sfr6, cls8 and Columbia (parental line for both mutants), both at ambient, and after treatment with cold (5 degrees) for 3 hours. This timepoint is designed to ÃÂcaptureÃÂ both rapidly responding genes e.g. CBF/DREB1 transcription factors, and also more slow genes e.g. COR genes (KIN1/2 and LTI78). Pilot northerns confirm that this time point is suitable.This analysis will provide new insight into 2 novel genes required for tolerance to low temperature in Arabidopsis, and additionally will determine the nature of overlap between the separate processes of chilling and freezing tolerance.
Project description:Chilling stress is a major abiotic stress that affects rice growth and development. Rice seedlings are quite sensitive to chilling stress and this harms global rice production. Comprehensive studies of the molecular mechanisms for response to low temperature are of fundamental importance to chilling tolerance improvement. The number of identified cold regulated genes (CORs) in rice is still very small. Circadian clock is an endogenous timer that enables plants to cope with forever changing surroundings including light–dark cycles imposed by the rotation of the planet. Previous studies have demonstrated that the circadian clock regulates stress tolerances in plants show circadian clock regulation of plant stress tolerances. However, little is known about coordination of the circadian clock in rice chilling tolerance. In this study, we investigated rice responses to chilling stress under conditions with natural light-dark cycles. We demonstrated that chilling stress occurring at nighttime significantly decreased chlorophyll content and photosynthesis efficiency in comparison with that occurring at daytime. Transcriptome analysis characterized novel CORs in indica rice, and suggested that circadian clock obviously interferes with cold effects on key genes in chlorophyll (Chl) biosynthesis pathway and photosynthesis-antenna proteins. Expression profiling revealed that chilling stress during different Zeitberger times (ZTs) at nighttime repressed the expression of those genes involved Chl biosynthesis and photosynthesis, whereas stress during ZTs at daytime increases their expression dramatically. Moreover, marker genes OsDREBs for chilling tolerance were regulated differentially by the chilling stress occurring at different ZTs. The phase and amplitude of oscillation curves of core clock component genes such as OsLHY and OsPRR1 are regulated by chilling stress, suggesting the role of chilling stress as an input signal to the rice circadian clock. Our work revealed impacts of circadian clock on chilling responses in rice, and proved that the effects on the fitness costs are varying with the time in a day when the chilling stress occurs.
Project description:Chilling is a major stress to plants of subtropical and tropical origins including maize. To reveal molecular mechanisms underlying chilling tolerance and chilling survival, we investigated maize transcriptome responses to chilling stress in differentiated leaves and roots as well as in crowns with meristem activity for survival. Chilling stress on maize shoots and roots is found to each contribute to seedling lethality in maize. Comparison of maize lines with different chilling tolerance capacity reveals that chilling survival in maize is highly associated with upregulation in leaves and crowns of abscisic acid response pathway, transcriptional regulators and cold response as well as downregulation of heat response in crowns. Comparison of chilling treatment on whole and part of the plants reveals that response to distal-chilling is very distinct from, and sometimes opposite to, response to local- or whole-plant chilling in both leaves and roots, suggesting a communication between shoots and roots in environmental perception. In sum, this study details chilling responses in leaves, roots and crowns and reveals potential chilling survival mechanism in maize, which lays ground for further understanding survival and tolerance mechanisms under low but non-freezing temperatures in tropical and subtropical plants.
Project description:Rice is sensitive to chilling stress, especially at the seedling stage. To elucidate the molecular genetic mechanisms of chilling tolerance in rice, comprehensive gene expressions of two rice genotypes (chilling-tolerant LTH and chilling-sensitive IR29) with contrasting responses to chilling stress were comparatively analyzed. Results revealed distinct global transcription reprogramming between the two rice genotypes under time-series chilling stress and subsequent recovery conditions. A set of genes with higher basal expression were identified in LTH, indicating their possible role in intrinsic tolerance to chilling stress. Under chilling stress, the major effect on gene expression was up-regulation in LTH and strong repression in IR29. Early responses to chilling stress in both genotypes featured commonly up-regulated genes related to transcription regulation and signal transduction, while functional categories for late phase chilling regulated genes were diverse with a wide range of functional adaptations to continuous stress. Following the cessation of chilling treatments, there was quick and efficient reversion of gene expression in LTH, while IR29 displayed considerably slower recovering capacity at the transcriptional level. In addition, the detection of differentially-regulated TF genes and enriched cis-elements demonstrated that multiple regulatory pathways, including CBF and MYBS3 regulons, were involved in chilling stress tolerance. In present study, comprehensive gene expression using an Affymetrix rice genome array revealed a diverse global transcription reprogramming between two rice genotypes under chilling stress and subsequent recovery conditions. The dominant change in gene expression at low temperature was up-regulation in the chilling-tolerant genotype and down-regulation in the chilling-sensitive genotype. Early responses to chilling stress common to both genotypes featured up-regulated genes related to transcription regulation and signal transduction, while functional categories of LR-chilling regulated genes were clearly diverse with a wide range of functional adaptations. At the end of the chilling treatments, there was quick and efficient reversion of gene expression in LTH, while IR29 displayed considerably slower recovery capacity at the transcriptional level. Finally, analysis of differentially-regulated TF genes and enriched cis-elements demonstrated that multiple regulatory pathways, including CBF and MYBS3 regulons, are involved in chilling stress tolerance. In this study, parallel transcriptomic analysis in two rice genotypes with contrasting chilling-tolerant phenotypes was performed to identify and characterize novel genes involved in chilling stress tolerance in rice.
Project description:Our analysis of the sfr6 freezing-sensitive mutant (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.) and cls8 (unpublished) chilling-sensitive mutant of Arabidopsis, has revealed that the expression of certain cold-regulated genes is aberrant in both these mutants. In order to understand the molecular basis of chilling and freezing stress in Arabidopsis and also to determine commonalities and differences between these 2 different physiological stress-tolerance processes, we request transcriptome analysis for both of these mutants compared to wild type in one experiment, upon cold treatment and at ambient conditions. The sfr6 mutant shows the most severe phenotype with respect to cold gene expression, but is tolerant to chilling (Knight, H., Veale, E., Warren, G. J. and Knight, M. R. (1999). Plant Cell 11, 875-886.). However, it is unable to cold acclimate and hence is sensitive to freezing. The cls8 mutant, on the other hand, has a relatively mild phenotype relative to the cold-regulated genes we have examined, but is very sensitive to chilling temperatures (15 to 10 degree centigrade). It is thus likely that in cls8 we have not yet identified the genes which are most affected, and which account for the physiological phenotype. Both sfr6 and cls8 have been fine-mapped and are close to being cloned. The cls8 mutant has an altered calcium signature in response to cold which means it is likely to be affected in early signalling, e.g. cold perception itself.We will compare the expression profiles of genes in sfr6, cls8 and Columbia (parental line for both mutants), both at ambient, and after treatment with cold (5 degrees) for 3 hours. This timepoint is designed to Âcapture both rapidly responding genes e.g. CBF/DREB1 transcription factors, and also more slow genes e.g. COR genes (KIN1/2 and LTI78). Pilot northerns confirm that this time point is suitable.This analysis will provide new insight into 2 novel genes required for tolerance to low temperature in Arabidopsis, and additionally will determine the nature of overlap between the separate processes of chilling and freezing tolerance. Experiment Overall Design: Number of plants pooled:40-60
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of gene expression profiles of cucumber under short-term chilling stress. The goals of this study are to transcriptome analysis of cucumber leaves under chilling stress. Methods: mRNA profiles of seedlings exposed to an air temperature of 6°C in the absence of light at 0, 2, 6, and 12 h were generated by deep sequencing, in triplicate, using Illumina Hiseq platform. The reference genome and gene model annotation files were downloaded from the genome website (http://cucurbitgenomics.org/). An index of the reference genome was built using Bowtie v.2.2.3 and paired-end clean reads were aligned to the reference genome using TopHat v.2.0.12. qRT–PCR validation was performed using SYBR Green assays. Results: A total of 55.7 million clean reads was generated. Based on the threshold values of absolute value of log2 ratio ≥ 1 and FDR ≤ 0.05, a total of 2113 DEGs was identified at three time points (2, 6, and 12 h). A total of 30 genes was detected at all time points. The number of DEGs increased with time. In total, 100 TFs from 22 families in three subsets were detected. And 19 kinase families were identified in three subsets. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular mechanisms underlying the response to chilling stress in cucumber and other plants. Conclusions: The results presented here reveal changes in the transcriptome profile of cucumber in response to chilling stress. Exposure to a low temperature induced genes involved in hormone regulation, lipid metabolism, and photosynthesis, including NAC, WRKY, AP2/ERF, ERD, MYB as well as zinc finger TFs and protein kinases such as receptor-like protein kinase, MAPK, and CDK. Most TFs were upregulated whereas CDKs were downregulated. These findings provide information that can be useful for investigating the molecular mechanisms underlying the response to chilling stress in cucumber and other plants.