Project description:The purpose of this study is to understand the mechanism of sodium arsenite (NaAsO2)-induced apoptosis of L-02 human hepatic cells, and how Dictyophora polysaccharide (DIP) protects L-02 cells from arsenic-induced apoptosis. The results revealed that DIP pretreatment inhibited NaAsO2 induced L-02 cells apoptosis by increasing anti-apoptotic Bcl-2 expression and decreasing pro-apoptotic Bax expression. Proteomic analysis showed that arsenic treatment disrupted the expression of metabolism and apoptosis associated proteins, including ribosomal proteins (RPs). After pretreatment with DIP, the expression levels of these proteins were reversed or restored. For the first time, it was observed that the significant decrease of cytoplasmic RPs and the increase of mitochondrial RPs were related to human normal cell apoptosis induced by arsenic. This is also the first report that the protective effect of DIP on cells was related to RPs. The results highlight the relationship between RPs and apoptosis, as well as the relationship between RPs and DIP attenuating arsenic-induced apoptosis.
Project description:As an edible and medicinal fungus, Dictyophora indusiata is well-known for its morphological elegance, distinctive taste, high nutritional value, and therapeutic properties. In this study, eighteen compounds (1-18) were isolated and identified from the ethanolic extract of D. indusiata; four (1-4) were previously undescribed. Their molecular structures and absolute configurations were determined via a comprehensive analysis of spectroscopic data (1D/2D NMR, HRESIMS, ECD, and XRD). Seven isolated compounds were examined for their anti-inflammatory activities using an in vitro model of lipopolysaccharide (LPS)-simulated BV-2 microglial cells. Compound 3 displayed the strongest inhibitory effect on tumor necrosis factor-α (TNF-α) expression, with an IC50 value of 11.9 μM. Compound 16 exhibited the highest inhibitory activity on interleukin-6 (IL-6) production, with an IC50 value of 13.53 μM. Compound 17 showed the most potent anti-inflammatory capacity by inhibiting the LPS-induced generation of nitric oxide (NO) (IC50: 10.86 μM) and interleukin-1β (IL-1β) (IC50: 23.9 μM) and by significantly suppressing induced nitric oxide synthase (iNOS) and phosphorylated nuclear factor-kappa B inhibitor-α (p-IκB-α) expression at concentrations of 5 μM and 20 μM, respectively (p < 0.01). The modes of interactions between the isolated compounds and the target inflammation-related proteins were investigated in a preliminary molecular docking study. These results provided insight into the chemodiversity and potential anti-inflammatory activities of metabolites with small molecular weights in the mushroom D. indusiata.
Project description:Dictyophora rubrovolvata, a rare edible mushroom with both nutritional and medicinal values, was regarded as the "queen of the mushroom" for its attractive appearance. Dictyophora rubrovolvata has been widely cultivated in China in recent years, and many researchers were focusing on its nutrition, culture condition, and artificial cultivation. Due to a lack of genomic information, research on bioactive substances, cross breeding, lignocellulose degradation, and molecular biology is limited. In this study, we report a chromosome-level reference genome of D. rubrovolvata using the PacBio single-molecule real-time-sequencing technique and high-throughput chromosome conformation capture (Hi-C) technologies. A total of 1.83 Gb circular consensus sequencing reads representing ∼983.34 coverage of the D. rubrovolvata genome were generated. The final genome was assembled into 136 contigs with a total length of 32.89 Mb. The scaffold and contig N50 length were 2.71 and 2.48 Mb, respectively. After chromosome-level scaffolding, 11 chromosomes with a total length of 28.24 Mb were constructed. Genome annotation further revealed that 9.86% of the genome was composed of repetitive sequences, and a total of 508 noncoding RNA (rRNA: 329, tRNA: 150, ncRNA: 29) were annotated. In addition, 9,725 protein-coding genes were predicted, among which 8,830 (90.79%) genes were predicted using homology or RNA-seq. Benchmarking Universal Single-Copy Orthologs results further revealed that there were 80.34% complete single-copy fungal orthologs. In this study, a total of 360 genes were annotated as belonging to the carbohydrate-active enzymes family. Further analysis also predicted 425 cytochromes P450 genes, which can be classified into 41 families. This highly accurate, chromosome-level reference genome of D. rubrovolvata will provide essential genomic information for understanding the molecular mechanism in its fruiting body formation during morphological development and facilitate the exploitation of medicinal compounds produced by this mushroom.
| S-EPMC10411574 | biostudies-literature
Project description:Effects of Cultivation of Dictyophora rubrovolvata on Soil Microorganisms