Project description:Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7,488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101. Comparative transcriptome analysis of Arabidopsis treated with Pf. SS101, a growth and ISR promoting rhizobacteria and plants treated with cysH mutant of Pf.SS101 that fails to induce the afformentioned phenotypes
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants. The objective of this experiment was to identify Theobroma cacao genes that are differentially expressed between leaves inoculated with fungal endophyte Colletotrichum tropicale (E+ leaves) and control un-inoculated leaves (E- leaves) 3 days post endophyte inoculation. The experiment was conducted in a Percival growth chamber (model I35LL, 115 volts, 1/4 Hp, series: 8503122.16, Percival Scientific, Inc., Perry IA) with 12/12 h light/dark photoperiod and temperatures of 30M-BM-:C and 26M-BM-:C respectively. Inoculation was done by aspersion of endophyte spores (2X10^6 spore/ml) to a group of T. cacao seedlings and a second group of seedlings were maintained as control un-inoculated (E- leaves). Then three biological replicates (each one consisting of one leaf from different plants) per treatment E+ and four leaves per treatment E- leaves) were collected and processed for a two color oligo microarray analysis.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants. The objective of this experiment was to identify Theobroma cacao genes that are differentially expressed between leaves inoculated with fungal endophyte Colletotrichum tropicale (E+ leaves) and control un-inoculated leaves (E- leaves) 14 days post last endophyte inoculation. The experiment was conducted in a Percival growth chambers (model I35LL, 115 volts, 1/4 Hp, series: 8503122.16, Percival Scientific, Inc., Perry IA) with 12/12 h light/dark photoperiod and temperatures of 30M-BM-:C and 26M-BM-:C respectively. A total of four endophyte spore inoculations (1X10^6 spore/ml) were made by aspersion to a group of T. cacao seedlings and a second group of seedlings were maintained as un-inoculated. Then six biological replicates per treatment (E+ leaves and six E- leaves) each one belonging from a different seedling were collected and processed for a two color oligo microarray analysis. A total of six arrays were processed, each one hybridized to an inoculated and a control un-inoculated sample in a dye swap design.
Project description:We addressed the question how the interaction between the beneficial root endophyte Serendipita vermifera (Sv) and the pathogen Bipolaris sorokiniana (Bs) affects fungal behavior and determines barley host responses using a gnotobiotic natural soil-based split-root system for phenotypic and transcriptional analyses.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants.
Project description:Inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant foliar fungal endophyte in healthy T. cacao, induced significant changes in the expression of hundreds of host genes. Further, E+ leaves exhibit enhanced pathogen resistance, increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes that all correspond to the changes in expression of specific functional genes in related pathways. Moreover, a cacao gene highly up-regulated in E+ leaves increases pathogen resistance apart from any direct endophyte effects. Thus, benefits of increased pathogen resistance in E+ plants are partially due to enhanced induction of intrinsic host defense pathways, and potential costs include reduced photosynthetic capacity and endophyte metabolism of host tissues. Similar effects are likely to be properties of most plant-endophyte interactions, suggesting general relevance to the design and interpretation of studies of genetic and phenotypic expression in plants.
Project description:OsPSTOL1 confers phosphorus (P)-deficiency tolerance in rice through enhancement of early root growth. The larger root surface area at early stage provides the plants an advantage for nutrient uptake. We conducted microarrays to determine the genes which are constitutively regulated by OsPSTOL1, independent of P supply and developmental stage.
Project description:The root-colonizing fungal endophyte Serendipita indica, formerly known as Piriformospora indica, is well known to promote plant biomass production and stress tolerance of its host plants. Co-cultivation of Arabidopsis thaliana seedlings with the fungus triggers a substantial induction of the growth of the root system. However, the molecular mechanisms by which the fungus promotes plant growth over an extended period of time is still unclear. We here report the comparative analysis of the effect of a mock- and S. indica-infection on wild-type Arabidopsis plants (Col-0) after 2 and 10 days of co-cultivation. Our data provide evidence for the induction of a number of genes that are consistingly induced during the plant–fungus interaction.