Project description:affy_duplicature_lyon_rose. The objective is to identify the genes involved in petal doubling in rose. In this study we are using two rosa gallica genotypes: wild-type (simple flower rose) and Cardinal de Richelieu (double flower rose), and two rosa hybrida genotypes : Souvenir de la Malmaison, which has about 110 petal, and its bud sport cultivar, Souvenir de St Anne’s. In this study, we used a microarray approach to compare the transcriptome of double flower rose (CDR) versus simple flower rose (G). The objective is to identify genes whose expression is associated with the double flower phenotype. These genes are putative candidates involved in the control of petal organ number per flower. Floral buds were dissected under a microscope and pooled in eppendorf tubes. Tissue samples were harvested at the same time during 3 weeks in April 2007. Total RNA was extracted from the pools of flowers using the Plant RNA kit (Macherey Nagel), and then used to hybridize Rosa-Affymetrix microarrays. Keywords: genotype comparison
Project description:affy_petaldvt_lyon_rose. The objective is to identify genes involved in petal development in rose. We aim at identifying genes whose expression correlates with flower opening and scent emission. In this study, we used a microarray approach to compare the transcriptome of a scented rose flower (PF) versus non-scented rose flower (RF). Samples (petal tissues) were collected at the same time early in the afternoon. Total RNA was extracted using the Plant RNA kit (Macherey Nagel), and then used to hybridize Rosa-Affymetrix microarrays. Keywords: scented vs non-scented flowers
Project description:affy_petaldvt_lyon_rose. The objective is to identify genes involved in petal development in rose. We aim at identifying genes whose expression correlates with flower opening and scent emission. In this study, we used a microarray approach to compare the transcriptome of a scented rose flower (PF) versus non-scented rose flower (RF). Samples (petal tissues) were collected at the same time early in the afternoon. Total RNA was extracted using the Plant RNA kit (Macherey Nagel), and then used to hybridize Rosa-Affymetrix microarrays. Keywords: scented vs non-scented flowers 4 arrays - rose. Scented and non-scented flowers, 2 replicates each.
Project description:affy_duplicature_lyon_rose. The objective is to identify the genes involved in petal doubling in rose. In this study we are using two rosa gallica genotypes: wild-type (simple flower rose) and Cardinal de Richelieu (double flower rose), and two rosa hybrida genotypes : Souvenir de la Malmaison, which has about 110 petal, and its bud sport cultivar, Souvenir de St Anne’s. In this study, we used a microarray approach to compare the transcriptome of double flower rose (CDR) versus simple flower rose (G). The objective is to identify genes whose expression is associated with the double flower phenotype. These genes are putative candidates involved in the control of petal organ number per flower. Floral buds were dissected under a microscope and pooled in eppendorf tubes. Tissue samples were harvested at the same time during 3 weeks in April 2007. Total RNA was extracted from the pools of flowers using the Plant RNA kit (Macherey Nagel), and then used to hybridize Rosa-Affymetrix microarrays. Keywords: genotype comparison 8 arrays - rose. 4 genotypes, 2 replicates each.
Project description:Water deficit stress (WDS) is a crucial factor that causes the inhibition of petal expansion and abnormal flower opening in rose. The regulatory mechanisms of petal expansion by WDS at transcriptional level were investigated by analysis expression profiles under WDS.
Project description:Petal senescence involves numerous programmed changes in biological and biochemical processes. Ubiquitination plays a critical role in protein degradation, a hallmark of organ senescence. Therefore, we investigated changes in the proteome and ubiquitome of senescing rose (Rosa hybrida) petals to better understand their involvement in petal senescence. Of 3859 proteins quantified in senescing petals, 1198 were up-regulated and 726 were down-regulated during senescence. We identified 2208 ubiquitinated sites including 384 with increased ubiquitination in 298 proteins and 1035 with decreased ubiquitination in 674 proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that proteins related to peptidases in proteolysis and autophagy pathways were enriched in the proteome, suggesting that protein degradation and autophagy play important roles in petal senescence. In addition, many transporter proteins accumulated in senescing petals, and several transport processes were enriched in the ubiquitome, indicating that transport of substances is associated with petal senescence and regulated by ubiquitination. Moreover, several components of the brassinosteroid (BR) biosynthesis and signaling pathways were significantly altered at the protein and ubiquitination levels, implying that BR plays important roles in petal senescence. Our data provide a comprehensive view of rose petal senescence at the posttranslational level.
Project description:We employed Non-standard quantitative techniques and quantitative proteomics techniques based on mass spectrometry to perform proteomics analyses for the petal abscission zone of rose petal at stage 3 stage 5. In total, 6595 proteins were detected, we compared differentially expressed proteins (DEPs) between stage 3 and stage 5 (FC>1.5, P-value<0.05). We found that 271 proteins were significantly up-regulated, while 444 proteins were significantly down-regulated.
Project description:Water deficit stress (WDS) is a crucial factor that causes the inhibition of petal expansion and abnormal flower opening in rose. The regulatory mechanisms of petal expansion by WDS at transcriptional level were investigated by analysis expression profiles under WDS. Analysis used total RNA samples of petals taken from flowers treated by WDS comparison to those from control flowers. Transcriptome dynamics during treatment time responsive to WDS.