Project description:Transcriptome Characterization of developing bean (Phaseolus vulgaris L.) pods from two genotypes with contrasting seed zinc concentrations.
Project description:Dry bean (Phaseolus vulgaris L.) seeds are a rich source of dietary zinc, especially for people consuming plant-based diets. Within P. vulgaris there is at least two-fold variation in seed Zn concentration. Genetic studies have revealed seed Zn differences to be controlled by a single gene in two closely related navy bean genotypes, Albion and Voyager. In this study, these two genotypes were grown under controlled fertilization conditions and the Zn concentration of various plant parts were determined. The two genotypes had similar levels of Zn in their leaves and pods but Voyager had 52% more Zn in its seeds than Albion. RNA was sequence from developing pods of both genotypes. Transcriptome analysis of these genotypes identified 27,198 genes in the developing bean pods, representing 86% of the genes in the P. vulgaris genome (v 1.0 DOE-JGI and USDA-NIFA). Expression was detected in 18,438 genes. A relatively small number of genes (381) were differentially expressed between Albion and Voyager. Differentially expressed genes included three genes potentially involved in Zn transport, including zinc-regulated transporter, iron regulated transporter like (ZIP), zinc-induced facilitator (ZIF) and heavy metal associated (HMA) family genes. In addition 12,118 SNPs were identified between the two genotypes. Of the gene families related to Zn and/or Fe transport, eleven genes were found to contain SNPs between Albion and Voyager.
Project description:TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in the defense responses to biotic and abiotic stresses. Here we identified the TIFY genes (designated as PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Twenty-three genes from the PvTIFY gene family were identified through whole genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the designed Bean Custom Array 90K was performed in transgenic roots of composite plants with modulated -RNAi-silencing or over-expression- PvTIFY10C gene expression. Data were interpreted using Mapman adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress response and metabolism in silenced vs. over-expressing roots. These data point to transcript reprogramming -mainly repression- orchestrated by PvTIFY10C. In addition we found that several PvTIFY genes as well as genes from the JA biosynthetic pathway responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, signaling, were oppositely-regulated in control vs. PvTIFY10C silenced roots. These data indicate that PvTIFY10C regulates, directly or indirectly, gene expression of some P-responsive genes something that could be mediated by JA-signaling. Our work contributed to the functional characterization of PvTIFY transcriptional regulators in common bean, an agronomically important legume. Members from the large PvTIFY gene family are important global transcriptional regulators that could participate as repressors of the JA signaling pathway. In addition we propose that the JA-signaling pathway that involves PvTIFY genes might play a role in regulating the plant response / adaptation to P-starvation.
Project description:Paraburkholderia phymatum belongs to the β-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papillionoid legumes. In contrast to symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with β-proteobacteria. In this study, we analyzed RNA-seq data of free-living P. phymatum growing under nitrogen replete and limited conditions, the latter partially mimicking the situation in nitrogen deprived soils. Among the genes up-regulated under nitrogen limitation, we found genes involved in exopolysaccharide production and motility, two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean) were generated and compared. Among the genes highly up-regulated during symbiosis, we identified an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49). Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen fixation abilities suggesting an important role of the cytochrome for respiration inside the nodule. Analysis of mutant strains for RNA polymerase transcription factor rpoN (σ54) and its activator NifA indicated that – similar to the situation in α-rhizobia – P. phymatum RpoN and NifA are key regulators during symbiosis with P. vulgaris.