Project description:The genetics, social, cultural and environmental factors pose a great challenge for the diagnosis and treatment of coronary heart disease among different racial groups. We aimed to identify the differentially expressed genes involved in coronary heart disease in Chinese Han people as an aid for screening and diagnosing coronary heart disease. We used microarrays to detail the global programme of gene expression to identify the differentially gene between the patients with coronary heart disease and healthy people in Chinese Han people Three patients with coronary heart disease and three healthy people in Chinese Han people were recruited,total RNA of each samples were extracted from peripheral blood to hybridize with Affymetrix microarrays.
Project description:The genetics, social, cultural and environmental factors pose a great challenge for the diagnosis and treatment of coronary heart disease among different racial groups. We aimed to identify the differentially expressed genes involved in coronary heart disease in Chinese Han people as an aid for screening and diagnosing coronary heart disease. We used microarrays to detail the global programme of gene expression to identify the differentially gene between the patients with coronary heart disease and healthy people in Chinese Han people
Project description:As the fetal heart develops, cardiomyocyte proliferation potential decreases while fatty acid oxidative capacity increases, a highly regulated transition known as cardiac maturation. Small noncoding RNAs, such as microRNAs (miRNAs), contribute to the establishment and control of tissue-specific transcriptional programs. However, small RNA expression dynamics and genome wide miRNA regulatory networks controlling maturation of the human fetal heart remain poorly understood. Transcriptome profiling of small RNAs revealed the temporal expression patterns of miRNA, piRNA, circRNA, snoRNA, snRNA and tRNA in the developing human heart between 8 and 19 weeks of gestation. Our analysis revealed that miRNAs were the most dynamically expressed small RNA species throughout mid-gestation. Cross-referencing differentially expressed miRNAs and mRNAs predicted 6,200 mRNA targets, 2134 of which were upregulated and 4066 downregulated as gestation progresses. Moreover, we found that downregulated targets of upregulated miRNAs predominantly control cell cycle progression, while upregulated targets of downregulated miRNAs are linked to energy sensing and oxidative metabolism. Furthermore, integration of miRNA and mRNA profiles with proteomes and reporter metabolites revealed that proteins encoded in mRNA targets, and their associated metabolites, mediate fatty acid oxidation and are enriched as the heart develops.This study revealed the small RNAome of the maturing human fetal heart. Furthermore, our findings suggest that coordinated activation and repression of miRNA expression throughout mid-gestation is essential to establish a dynamic miRNA-mRNA-protein network that decreases cardiomyocyte proliferation potential while increasing the oxidative capacity of the maturing human fetal heart.
Project description:The Danlou Tablets (DLT), a patented medicine, has been widely used to treat coronary heart disease (CHD) in China for several decades. Though the anti-inflammatory and anti-oxidation effect has been preliminarily proposed as one of the potential mechanisms of DLT for CHD treatment, the underlying mechanisms remain elusive. We use microarray to explain the genome changes of patients with coronary heart disease and patients with coronary heart disease after treatment with Danlou tablets, so as to explore the potential mechanism of treating diseases with traditional Chinese medicine.
Project description:Vascular endothelial cells play an important role in the development of coronary artery disease, their injury leads to coronary heart disease and atherosclerosis. This study aimed to elucidate the role of FOXO3-regulated target gene expression and alternative splicing in vascular endothelial cell injury in coronary artery disease
Project description:The present study aims to explore the expression profiles and biological functions of long-chain noncoding RNA (lncRNA) in coronary heart disease (CHD)
Project description:Coronary artery disease (CAD) is the leading cause of mortality worldwide. We aimed to compare expression of miRNA in the affected artery of acute myocardial infarction (ST-elevation myocardial infarction) male patients versus healthy individuals (control). Blood samples were collected during coronary catheterization from proximal culprit coronary arteries aimed for the interventions or from a random artery in control samples. RNA isolated from serum was used for miRNA high throughput sequencing.